Trotterization and Trotter Error (YQIS 2021)

Abstract

The Lie-Trotter formula, together with its higher-order generalizations, provides a simple approach to decomposing the exponential of a sum of operators, an approach commonly known as Trotterization in quantum computation. This talk will present some of our recent results on the application of these formulas to digital quantum simulation. Topics to be covered include the implementation of Trotterization in the quantum circuit model, vanilla bound on the Trotter error with $1$-norm scaling, faster Trotterization by randomization and symmetry protection, and improved analysis of Trotter error with commutator scaling. Based on arXiv:1711.10980, arXiv:1805.08385, arXiv:1901.00564, arXiv:1912.08854, arXiv:2006.16248, arXiv:2012.09194.

Date
Apr 16, 2021
Location
Michigan State University, East Lansing, MI 48824, United States (online event)
Yuan Su
Yuan Su
Senior Researcher

I work on quantum algorithms for simulating Hamiltonian dynamics. I am particularly interested in the design, analysis, implementation, and application of quantum simulation.