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Abstract

With quantum computers of significant size now on the horizon, we should understand how
to best exploit their initially limited abilities. To this end, we aim to identify a practical problem
that is beyond the reach of current classical computers, but that requires the fewest resources
for a quantum computer. We consider quantum simulation of spin systems, which could be
applied to understand condensed matter phenomena. We synthesize explicit circuits for three
leading quantum simulation algorithms, employing diverse techniques to tighten error bounds
and optimize circuit implementations. Quantum signal processing appears to be preferred among
algorithms with rigorous performance guarantees, whereas higher-order product formulas prevail
if empirical error estimates suffice. Our circuits are orders of magnitude smaller than those for
the simplest classically-infeasible instances of factoring and quantum chemistry.

1 Introduction

While a scalable quantum computer remains a long-term goal, recent experimental progress suggests
that devices capable of outperforming classical computers will soon be available [10, 21, 28, 38, 73,
78]. Multiple groups have already developed programmable devices with several qubits and two-
qubit gate fidelities around 98% [49], and similar devices with around 50 qubits are under active
development. While the error rates of these early machines severely limit the total number of gates
that can be reliably performed, future improvements should lead to machines with more qubits and
more reliable gates. This raises the exciting possibility of solving practical problems that are beyond
the reach of classical computation. Such an outcome would be a landmark in the development of
quantum computers and would begin an era in which they serve not only as testbeds for science,
but as practical computing machines.

Reaching this goal will require not only significant experimental advances, but also careful quan-
tum algorithm design and implementation. Here we address the latter issue by developing explicit
circuits, and thereby producing concrete resource estimates, for practical quantum computations
that can outperform classical computers. Through this work, we aim to identify applications for
small quantum computers that help to motivate the significant investment required to develop
scalable, fault-tolerant quantum computers.

There has been considerable previous research on compiling quantum algorithms into explicit
circuits (see Appendix A for more detail). However, to the best of our knowledge, none of these
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studies aimed to identify minimal examples of super-classical quantum computation, and typical
resource counts were high. Our work is also distinct from recent work on quantum computational
supremacy [35], where the goal is merely to accomplish a super-classical task, regardless of its
practicality. Instead, we aim to pave the way toward practical quantum computations (which may
not be far beyond the threshold for supremacy).

Arguably, the most natural application of quantum computers is to the problem of simulating
quantum dynamics [30]. Quantum computers can simulate a wide variety of quantum systems,
including fermionic lattice models [77], quantum chemistry [76], and quantum field theories [40].
However, simulations of spin systems with local interactions likely have less overhead, so we focus
on them as an early candidate for practical quantum simulation. While analog simulation may be
easier to realize in the short term, we focus on digital simulation for its greater flexibility and the
prospect of invoking fault tolerance.

Efficient quantum algorithms for simulating quantum dynamics have been known for over two
decades [50]. Recent work has led to algorithms with significantly improved asymptotic performance
as a function of various parameters such as the evolution time and the allowed simulation error
[11, 12, 14, 51, 52]. Our work investigates whether these alternative algorithms can be advantageous
for simulations of relatively small systems, and aims to lay the groundwork for the first practical
application of quantum computers.

2 Target system

To produce concrete benchmarks, we focus on a specific simulation task. Specifically, we consider a
one-dimensional nearest-neighbor Heisenberg model with a random magnetic field in the z direction.
This model is described by the Hamiltonian

n
∑

j=1

(~σj · ~σj+1 + hjσ
z
j ) (1)

where ~σj = (σxj , σ
y
j , σ

z
j ) denotes a vector of Pauli x, y, and z matrices on qubit j. We impose

periodic boundary conditions (i.e., ~σn+1 = ~σ1), and hj ∈ [−h, h] is chosen uniformly at random.
The parameter h characterizes the strength of the disorder.

This Hamiltonian has been considered in recent studies of self-thermalization and many-body
localization (see Appendix B for more detail). Despite intensive investigation, the details of a
transition between thermal and localized phases remain poorly understood. A major challenge is
the difficulty of simulating quantum systems with classical computers; indeed, the most extensive
numerical study we are aware of was restricted to at most 22 spins [54].

Hamiltonian simulation can efficiently access any feature that could be observed experimentally
(and more), and there are several proposals for exploring self-thermalization by simulating dynamics
[67, 68, 70]. Since all of these approaches involve only very simple state preparations and measure-
ments, we focus on the cost of simulating dynamics. We consider evolution times comparable to
the number of spins, since the system must evolve for this long for self-thermalization to take place
(or even for information to propagate across the system, owing to the Lieb-Robinson bound).

Specifically, we produce gate counts for simulations with h = 1, evolution time t = n (the
number of spins in the system), and overall accuracy ǫ = 10−3. These explicit choices help us to
focus on the system-size dependence of quantum simulation algorithms. This is a key consideration
for practical applications, yet it has been deemphasized in the literature on sparse Hamiltonian
simulation.
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Algorithm Ref. Gate complexity (t, ǫ) Gate complexity (n)

Product formula (PF), 1st order [50] O(t2/ǫ) O(n5)

Product formula (PF), (2k)th order [11] O(52kt1+1/2k/ǫ1/2k) O(52kn3+1/k)

Quantum walk [12] O(t/
√
ǫ) O(n4 logn)

Fractional-query simulation [13] O
(

t log2(t/ǫ)
log log(t/ǫ)

)

O
(

n4 log n
log logn

)

Taylor series (TS) [14] O
(

t log2(t/ǫ)
log log(t/ǫ)

)

O
(

n3 log2 n
log logn

)

Linear combination of quantum walk steps [15] O
(

t log
3.5(t/ǫ)

log log(t/ǫ)

)

O
(

n4 log n
log logn

)

Quantum signal processing (QSP) [51] O(t+ log(1/ǫ)) O(n3 logn)

Table 1: Previously-established asymptotic gate complexities of quantum simulation algorithms as a function
of the simulation time t, allowed error ǫ, and the system size n for a one-dimensional nearest-neighbor spin
model as in (1) with t = n and fixed ǫ.

3 Implementations

There are many distinct quantum algorithms for Hamiltonian simulation, some of which are summa-
rized in Table 1. We implement algorithms based on high-order product formulas (PF, introduced
in Section C.1) [11], direct application of the Taylor series (TS, Section C.2) [14], and the recent
quantum signal processing method (QSP, Section C.3) [51]. We expect these to be among the most
efficient approaches to digital quantum simulation. In particular, approaches based on quantum
walk [12, 15] appear to incur greater overhead (as discussed in Appendix D).

To produce concrete circuits, we implement quantum simulation algorithms in a quantum circuit
description language called Quipper [32] (see Appendix E for more details). Wherever possible,
we tighten the analysis of algorithm parameters and manually optimize the implementation. We
also process all circuits using an automated tool we developed for large-scale quantum circuit
optimization [57]. Our implementation is available in a public repository [26].

We express our circuits over the set of two-qubit cnot gates, single-qubit Clifford gates, and
single-qubit z rotations Rz(θ) := exp(−iσzθ/2) for θ ∈ R. Such gates can be directly implemented
at the physical level with both trapped ions [28] and superconducting circuits [21, 38]. In both
technologies, two-qubit gates take longer to perform and incur more error than single-qubit gates.
Thus, the cnot count is a useful figure of merit for assessing the cost of physical-level circuits on
a universal device. We also produce Clifford+T circuits using optimal circuit synthesis [66] so that
we can count T gates, which are typically the most expensive gates for fault-tolerant computation.

Our analysis ignores many practical details, such as architectural constraints, instead aiming
to give a broad overview of potential implementation costs that can be refined for specific systems.
When counting qubits, we assume that measured ancillas can be reused later.

3.1 Product formula algorithm

The product formula (PF) approach approximates the exponential of a sum of operators by a
product of exponentials of the individual operators. The asymptotic complexity of this approach
can be improved with higher-order Suzuki formulas [74]. By splitting the evolution into r segments
and making r sufficiently large, we can ensure that the simulation is arbitrarily precise. The main
challenge in making these algorithms concrete is to choose an explicit r that ensures some desired
upper bound on the error. Appendix F gives a detailed description of these implementation details.

We present two bounds, which we call the analytic andminimized bounds, that slightly strengthen
previous analysis [11]. However, bounds of this type are far from tight [5, 63, 64]. Thus, we develop
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an improved bound that exploits commutation relations among terms in the target Hamiltonian.
For a one-dimensional system of n spins with nearest-neighbor couplings, evolving for time t = n,
this commutator bound improves the asymptotic complexity of the (2k)th-order PF algorithm from
O(n3+1/k) to O(n3+2/(2k+1)) while also significantly improving the leading constant.

Naive computation of the commutator bound takes time O(n2k+1), which can be prohibitive
even for small n. To make this approach practical, we develop techniques that exploit the structure
of the Hamiltonian to compute the commutator bound in closed form. We explicitly evaluate this
bound for the first-, second-, and fourth-order product formulas.

Unfortunately, even the commutator bound can be very loose. To address this, we report empir-
ical error estimates by extrapolating the error seen in direct classical simulations of small instances
(as also explored in previous work on simulating many-body dynamics [63] and quantum chemistry
[5, 64]). While these empirical bounds do not provide rigorous guarantees on the simulation error,
they may nevertheless be useful in practice, and they improve the cost of PF algorithms by several
orders of magnitude.

3.2 Taylor series algorithm

The Taylor series (TS) algorithm directly implements the (truncated) Taylor series of the evolution
operator for a carefully-chosen constant time using a procedure for implementing linear combina-
tions of unitary operations [14]. This segment is then simply repeated until the entire evolution time
has been simulated. The circuit for a segment is built using three subroutines: a state preparation
procedure, a reflection about the |0〉 state, and an operation denoted select(V ) (discussed further
below). Our implementation of the TS algorithm (described in detail in Appendix G) also in-
cludes a concrete error analysis that establishes rigorous, non-asymptotic bounds on the simulation
parameters.

The aforementioned select(V ) operation applies a unitary Vj conditioned on a control register
being in the state |j〉, for j ∈ {1, . . . ,Γ}. We develop an improved implementation of this operation
by designing an optimized walk on a binary tree, saving a factor of about log2 Γ in the gate count.
For our simulations of systems with 10 to 100 spins, this reduces cnot and T gate counts over a
naive implementation by a factor of between 5 and 9, significantly improving the overall complexity.
Furthermore, the cost of our select(V ) implementation meets a previously-established asymptotic
lower bound [56]. This improvement may be more broadly applied to any algorithm using the
select(V ) procedure, such as others based on linear combinations of unitaries.

3.3 Quantum signal processing algorithm

The quantum signal processing (QSP) algorithm of Low and Chuang [51, 52] effectively implements
a linear combination of unitary operators by a different mechanism. This algorithm applies a
sequence of operations called phased iterates that manifest each eigenvalue of the Hamiltonian as
a rotation acting on an ancilla qubit. By carefully choosing a sequence of rotation angles for that
qubit, we induce the desired evolution.

The circuit for each phased iterate is built from similar subroutines as the TS algorithm. How-
ever, computing the M rotation angles for the phased iterates requires finding the roots of a
polynomial of degree 2M , and these roots must be determined to high precision. Because of these
challenges, we were unable to compute the parameters of the algorithm explicitly except in very
small instances. Instead, we produced estimates of the gate count (but not a complete implemen-
tation) by synthesizing a version of the algorithm with placeholder values of the parameters.
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Figure 1: Gate counts for optimized implementations of the PF algorithm (using the fourth-order formula
with commutator bound and the better of the fourth- or sixth-order formula with empirical error bound),
the TS algorithm, and the QSP algorithm (using the segmented version with analytic error bound and the
non-segmented version with empirical Jacobi-Anger error bound) for system sizes between 10 and 100. Left:
cnot gates for Clifford+Rz circuits. Right: T gates for Clifford+T circuits.

One way to alleviate this problem is to consider a segmented implementation of the QSP algo-
rithm. In this approach, we divide the evolution time into r segments, each of which is sufficiently
short that the classical preprocessing is tractable. Since the optimality of the QSP approach to
Hamiltonian simulation relies essentially on simulating the entire evolution as a single segment, the
segmented approach has higher asymptotic complexity. However, it allows us to develop a complete
implementation, and the overhead for moderate values of n is not too high.

For the full version of the algorithm, we consider an empirical error bound on the Jacobi-Anger
expansion, giving a modest improvement. Numerical evidence suggests that the additional savings
from an empirical error bound for the overall algorithm would not be significant. For the segmented
version of the algorithm, we instead used an analytic error bound so that the algorithm remains
rigorous (and because an empirical Jacobi-Anger error bound did not give much improvement in
that case).

Appendix H discusses our implementation of QSP algorithms in detail.

4 Results

Figure 1 compares gate counts for the PF algorithm (with commutator and empirical error bounds),
the TS algorithm, and the QSP algorithm (in both segmented and non-segmented versions). The
TS algorithm uses significantly more qubits than the QSP algorithm (as shown in Figure 2) while
also requiring more gates, so the latter is clearly preferred. In contrast, the QSP algorithm has
only slightly greater space requirements than the PF algorithm.

Surprisingly, despite being more involved, the QSP algorithm outperforms the rigorously-bounded
PF algorithm even for small system sizes. In particular, among the rigorously-analyzed algorithms,
the segmented QSP algorithm has the best performance, improving over the PF algorithm by about
an order of magnitude for cnot count and by almost two orders of magnitude for T count.

Empirical error bounds improve the performance of the PF algorithm by two to three orders of
magnitude, making it the preferred approach if rigorous performance guarantees are not required.
For the cnot count, the empirical PF algorithm improves over the full QSP algorithm by about
an order of magnitude. The advantage in the T count is less significant, but still indicates that the
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Figure 3: Total gate counts in the Clifford+Rz basis for product formula algorithms using the minimized
(left), commutator (center), and empirical (right) bounds, for system sizes between 13 and 500.

PF algorithm is dominant, especially considering its lower qubit count.
Although we expected that higher-order product formulas would not be advantageous for small

system sizes, we find that the fourth- and sixth-order formulas had the best performance for our
benchmark system with tens to hundreds of qubits, as shown in Figure 3. The fourth-order formula
with commutator bound gives the best available PF algorithm with a rigorous performance guar-
antee. Using empirical error bounds, the sixth-order formula outperforms the fourth-order formula
for systems of about 30 or more qubits, making the former the method of choice for simulations just
beyond the reach of classical computers (again, provided a heuristic error bound can be tolerated).
These results suggest that higher-order formulas may be advantageous for other quantum simula-
tions, such as those for quantum chemistry, even though they have not usually been considered
[62, 64].

For a system of 50 qubits—which is presumably close to the limits of direct classical simulation
for circuits such as ours [34]1—the TS algorithm uses 171 qubits and the QSP algorithm uses
67, whereas the PF algorithm uses only 50. At this size, the segmented QSP algorithm is the
best rigorously-analyzed approach, using about 1.8 × 108 cnot gates (over the set of Clifford+Rz

gates) and 2.4 × 109 T gates (over the set of Clifford+T gates). Using the empirical error bound,
the PF algorithm uses about 3 × 106 cnots and 1.8 × 108 T s (over Clifford+Rz and Clifford+T ,

1Recent work has demonstrated simulation of 56-qubit computations, but only for circuits of much smaller depth
than those considered in our work [61].
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respectively).
For comparison, previous estimates of gate counts for factoring, discrete logarithms, and quan-

tum chemistry simulations are significantly larger. First consider factoring a 1024-bit number,
which is beyond the factorization of RSA-768 that was achieved classically in 2009 [44]. The best
implementation we are aware of uses 3132 qubits and about 5.7× 109 T gates (when realized over
the set of Clifford+T gates) [47].2 Quantum algorithms for classically-hard instances of the ellip-
tic curve discrete logarithm problem have roughly comparable cost [65]. For quantum chemistry, a
natural target for a problem just beyond the reach of classical computing is a simulation of FeMoco,
the primary cofactor of nitrogenase, an enzyme that catalyzes the nitrogen fixation process. Even
for a fairly low-precision simulation, and using non-rigorous estimates of the product formula error,
the best implementation we are aware of uses 111 qubits and 1.0 × 1014 T gates [64]. Thus it
appears that simulation of spin systems is indeed a significantly easier task for near-term practical
quantum computation.

For a more detailed discussion of the results, see Appendix I.

5 Discussion

The work described in this paper represents progress toward the first genuine application of quantum
computers, solving a practical problem that is beyond the reach of classical computation. Of course,
our results only represent upper bounds. While we attempted to optimize the implementation
wherever possible, it is likely that further improvements can be found, and it is conceivable that
another algorithm (or computational task) may offer better performance. Our work establishes a
concrete set of benchmarks that we hope can be improved through future studies.

Demonstrations of digital quantum simulation performed to date [6, 19, 48] have been limited
in scope, primarily using the first-order formula (except for some limited applications of the second-
order formula [19, 48]). Our results show that higher-order formulas are useful even for simulations
of small systems. In the near term, it could be fruitful to demonstrate the utility of these formulas
experimentally. Even relatively small experiments might be able to probe the validity of our
empirical error bounds.

We have also identified some avenues for future improvement of quantum simulation algorithms.
We saw that rigorous error bounds for product formulas are very loose, even with our newly-
developed commutator bound. This motivates attempting to prove stronger rigorous error bounds
for product formulas. Also, the difficulty of computing the angles needed to perform the QSP
algorithm prevents us from taking full advantage of the algorithm in practice, so it would be useful
to develop a more efficient classical procedure for specifying these angles.

Further reduction of the gate count could be especially significant if it led to a simulation with
sufficiently few gates to be performed without invoking fault tolerance. With our current estimate
of millions of cnot gates for a superclassical simulation, this is likely out of reach at present.
However, further improvement could obviate the need for error correction in a system with highly
accurate gates, making an early demonstration of superclassical simulation more accessible.

Finally, our work has considered an idealized system, and we hope future work will take more
realistic constraints into account. Practical devices will come with architectural constraints, may
employ different basic operations than those considered here, may allow parallelization of gates,
and will likely require fault tolerance. By incorporating such features, we hope the work begun
here will lead to a blueprint for the first practical quantum computation.

2Reference [47] does not give explicit resource counts; we estimate them as described in Appendix A.

7



Acknowledgments

We thank Zhexuan Gong, Alexey Gorshkov, Guang Hao Low, Chris Monroe, and Nathan Wiebe
for helpful discussions.

This work was supported in part by the Army Research Office (MURI award W911NF-16-1-
0349), the Canadian Institute for Advanced Research, and the National Science Foundation (grant
1526380).

This material was partially based on work supported by the National Science Foundation during
DM’s assignment at the Foundation. Any opinion, finding, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

8



Appendices

A Related work 10

B Self-thermalization in spin models 10

C Simulation algorithms 11

C.1 Product formula algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
C.2 Taylor series algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
C.3 Quantum signal processing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D System-size dependence for other simulation algorithms 18

E Circuit synthesis and optimization 20

E.1 Overview of algorithm implementations . . . . . . . . . . . . . . . . . . . . . . . . . 20
E.1.1 Product formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
E.1.2 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
E.1.3 Quantum signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E.2 Gate counts and synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
E.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
E.4 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

F Product formula implementation details 23

F.1 Analytic and minimized bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
F.2 Commutator bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F.2.1 Abstract commutator bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
F.2.2 Concrete commutator bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

F.3 Empirical bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

G Taylor series implementation details 38

G.1 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
G.2 Failure probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
G.3 Encoding of the control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
G.4 Implementation of select(V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

H Quantum signal processing implementation details 48

H.1 Failure probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
H.2 Circuit optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
H.3 Phase computation and segmented algorithm . . . . . . . . . . . . . . . . . . . . . . 49
H.4 Empirical error bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

I Detailed results 52

I.1 Product formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
I.2 Other algorithms and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
I.3 Circuit optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9



A Related work

In this appendix, we discuss related work on quantum algorithms for simulating physics and resource
estimates for practical quantum computation.

The idea of simulating physics with quantum computers was suggested by Feynman [30] and
others in the 1980s. Since that time, there has been significant progress on the development of
algorithms for the basic problem of simulating Hamiltonian dynamics [1, 11–15, 23–25, 50–52]. In
addition, many authors have developed methods for using quantum computers to simulate the
behavior of specific types of systems. Quantum computers presumably offer an advantage for
simulations of any system in which quantum mechanics plays a significant role, including fermionic
lattice models [63, 71, 72, 77], quantum chemistry [3–5, 36, 42, 62, 64, 76], and quantum field
theories [39–41]. Much of this work has focused on asymptotic analysis, although some work on
concrete resource estimates for quantum chemistry simulation is mentioned below.

There has been considerable previous research on compiling quantum algorithms into explicit
circuits, including work on the IARPA Quantum Computer Science (QCS) program [37]. The
QCS program focused on synthesizing a selection of quantum algorithms and developing optimized
implementations over certain models of physical machines that were chosen to describe realistic
devices. To the best of our knowledge, none of these studies aimed to construct a minimal example
of a super-classical quantum computation, and typical resource counts were high.

In addition, many researchers have developed optimized implementations of Shor’s integer fac-
toring algorithm [8, 9, 31, 33, 46, 47, 60, 75] and estimated resource requirements for simulating
quantum chemistry [36, 64, 76]. As discussed in Section 4, our results suggest that quantum sim-
ulation of spin models will be accessible with dramatically fewer computational resources, making
this a promising candidate for an early demonstration of practical quantum computation.

The best implementation of the factoring algorithm that we are aware of appears in [47]. That
paper does not give explicit resource counts, so we estimate them as follows. The implementation
of Shor’s algorithm described there uses 4n3 +O(n2 log(n)) gates and 3n+ 6 log(n) +O(1) qubits
[47, page 10]. However, this count assumes we can perform arbitrary 2-qubit gates. The dominant
contribution to the gate count comes from modular exponentiation (in particular, the cost of the
QFT is small), which relies mainly on so-called psuedo-Toffoli gates. Each of these gates is realized
with two controlled-H gates and one controlled-Z gate; the former needs two T gates and the latter
needs none, so the total number of T gates is approximately 16

3 n
3.

Note that it is possible to factor an n-bit number using only about 2n qubits [8, 33], but at
the expense of a significantly higher gate count. Similarly, gate counts for quantum algorithms the
elliptic curve discrete logarithm problem can also be reduced at the cost of using significantly more
qubits [22].

B Self-thermalization in spin models

In this appendix we motivate our choice of a candidate spin system to simulate with an early
universal quantum computer, elaborating on the brief discussion in Section 2.

Recently, there has been considerable interest among the condensed matter community in under-
standing the equilibration of closed quantum systems [58]. While equilibration is normally viewed
as a consequence of coupling a system to a bath, a large but isolated quantum system may ef-
fectively display features of thermalization through its own unitary dynamics—or it may fail to
self-thermalize through a phenomenon known as many-body localization. Despite intense study, the
details of phase transitions between localized and thermal phases in various model systems remain
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poorly understood. A major challenge is the difficulty of simulating quantum systems with classical
computers, which has restricted numerical investigations to systems with fewer than 25 qubits.

To produce concrete benchmarks, we focus on a specific simulation task with the potential for
practical applications. As discussed in Section 2, we consider a one-dimensional nearest-neighbor
Heisenberg model with a random magnetic field in the z direction, described by the Hamiltonian (1).
This Hamiltonian has been studied as a model of self-thermalization and many-body localization
[54, 58, 59], where the most extensive numerical study we are aware of was restricted to at most 22
spins [54]. The nature of the phase transition as a function of h remains unclear [58, Section 6.2]
and could be illuminated by larger-scale simulations.

Classical numerics typically involve performing exact diagonalization to evaluate properties of
the full spectrum of the Hamiltonian (which is inefficient, and even more costly than simulating the
dynamics classically). To apply efficient quantum simulation, we must choose an initial state and
final measurement so that the outcomes are informative (say, so they provide useful information
about the phase diagram). While more limited than a calculation of the full spectrum, a quantum
simulation performed on a universal quantum computer should be able to efficiently extract any in-
formation that can be probed by an experiment (in addition to other quantities that could be hard
to extract experimentally). Experimental probes of thermalization and many-body localization
typically involve preparing a product initial state and performing a final standard-basis measure-
ment to see how the outcomes evolve in time—whether they retain memory of the initial state
or approach a thermal distribution. Specific observables include the Hamming distance from an
initial classical configuration [70] and the imbalance between occupation of even and odd sites [67].
Another proposal considers performing a spin-echo sequence (which involves simulating evolution
backward in time, something that is easy to accomplish using digital simulation) [68].

One might also perform similar tests on a (randomly sampled) eigenstate of the Hamiltonian,
using phase estimation [7]. However, this introduces additional overhead. Since we expect that it
will be informative (if not decisive) to study a global quench, we focus here on the cost of simulating
dynamics.

While we have considered the Heisenberg model (1) for concreteness, there is also interest in
exploring many-body localization and thermalization (among other phenomena) for diverse spin
systems including Ising [43, 70] and XXZ [68] models. Our basic approach to estimating simulation
resource requirements would apply to these models essentially unchanged and we expect that similar
conclusions about the relative performance of different quantum simulation algorithms would hold.

C Simulation algorithms

As discussed in Section 3, there are many different quantum algorithms for Hamiltonian simulation,
including algorithms based on product formulas [11, 23, 50], discrete-time quantum walks [12, 15,
24, 52], and linear combinations of unitaries [13–15, 27, 51, 52]. The asymptotic performance of
these algorithms is summarized in Table 1, both as a function of the simulation time t and allowed
error ǫ (as commonly emphasized in the literature on sparse Hamiltonian simulation) and as a
function of the number of qubits n (for the target system described in Section 2).

In this paper, we focus on the algorithms based on product formulas (PF) [11], on direct
implementation of the Taylor series (TS) [14], and on Low and Chuang’s recent quantum signal
processing (QSP) approach [51]. We expect these three algorithms to be among the best for
simulations of spin systems. Considering the dependence on system size, the algorithm based
on quantum walk [12] has worse asymptotic performance than the three methods we consider,
and requires a costly computation of trigonometric functions performed in quantum superposition.
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The algorithm based on the fractional-query model [13] is conceptually similar to the one that
implements the Taylor series [14], but the latter has a streamlined form, resulting in improved
asymptotic complexity as a function of n. For sparse Hamiltonians, the algorithm based on a linear
combination of quantum walk steps [15] has improved query complexity as a function of sparsity
over [14], but this improvement is not relevant to local Hamiltonians, and again the gate complexity
is higher.

As discussed in Section 2, we focus on a specific type of Hamiltonian that can be described as
a sum of L terms, of the form

H =

L
∑

ℓ=1

αℓHℓ, (2)

where each Hℓ is a tensor product of Pauli operators acting nontrivially on at most two out of n
qubits. We also assume that all the coefficients are positive real numbers αℓ > 0, since if αℓ < 0,
we can absorb the negative sign into the definition of Hℓ. In each of the algorithms described
below, our goal is to implement an approximation of the unitary operation exp(−iHt) for a given
time t ∈ R, up to an allowed error at most ǫ > 0. Although for some applications we might want
to simulate evolutions for negative times (e.g., to implement the spin-echo sequence proposed in
[68]), we can absorb this into the sign of the Hamiltonian, so we can consider t > 0 without loss of
generality.

In the remainder of this appendix, we review the three algorithms we consider, emphasizing
aspects relevant to our implementations. We consider the PF algorithm in Section C.1, the TS
algorithm in Section C.2, and the QSP algorithm in Section C.3. We briefly discuss the system size
dependence of other quantum simulation algorithms in Appendix D.

C.1 Product formula algorithm

The product formula (PF) approach approximates the exponential of a sum of operators by a
product of exponentials of the individual operators. The first-order formula

∥

∥

∥

∥

∥

∥

exp

(

−it
L
∑

j=1

αjHj

)

−
[ L
∏

j=1

exp

(

− it
r
αjHj

)]r
∥

∥

∥

∥

∥

∥

= O

(

(LΛt)2

r

)

, (3)

where Λ := maxj αj , underlies the first explicit quantum simulation algorithm [50]. The complexity
of quantum simulation can be improved [11, 23] using the (2k)th-order Suzuki formula S2k, defined
recursively by [74]

S2(λ) :=

L
∏

j=1

exp(αjHjλ/2)

1
∏

j=L

exp(αjHjλ/2) (4)

S2k(λ) := [S2k−2(pkλ)]
2S2k−2((1− 4pk)λ)[S2k−2(pkλ)]

2, (5)

with pk := 1/(4 − 41/(2k−1)) for k > 1. Using this improved formula, we have [11]

∥

∥

∥

∥

∥

∥

exp

(

−it
L
∑

j=1

αjHj

)

−
[

S2k

(

− it
r

)]r
∥

∥

∥

∥

∥

∥

= O

(

(LΛt)2k+1

r2k

)

. (6)

For the n-qubit system described in Section 2, we have L = O(n) and Λ = O(1). Using the
first-order formula to simulate that system for time t = n within a fixed error ǫ, it suffices to take
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r = O(n4). The circuit for each segment has size O(n), giving an overall gate complexity of O(n5).
Similarly, the complexity of simulation using the (2k)th-order formula is O(n3+1/k).

The main challenge in making these algorithms concrete is to choose an explicit r that ensures
some desired upper bound on the error. We derive such bounds in Appendix F. We consider
four bounds, which we call the analytic bound, the minimized bound, the commutator bound, and
the empirical bound. The analytic and minimized bounds involve only minor improvements over
standard approaches [11], whereas the commutator bound can be significantly tighter, and the
empirical bound attempts to capture the true performance.

The commutator bound, derived in Section F.2, exploits the fact that the error is smaller if
many pairs of terms in the Hamiltonian commute. This bound not only improves the overall
gate count of the PF algorithm, but also tightens the asymptotic complexity with respect to the
system size n. Specifically, for the (2k)th-order formula, this bound gives an asymptotic gate count
O(n3+2/(2k+1)), improving over the above O(n3+1/k).

To evaluate the commutator bound, we must compute the number of (2k + 1)-tuples of terms
from the Hamiltonian satisfying certain commutation relations. A brute-force approach to this
counting problem takes time O(n2k+1), which can be prohibitive for large n, even for modest
k. However, for certain Hamiltonians (including our target system), we show how to use the
combinatorial structure of the bound to compute it in closed form. We evaluate the bound for the
first-, second- and fourth-order product formulas, and study its asymptotic behavior for higher-order
formulas. We compare the commutator bound to other PF error bounds in Section I.1.

While the analytic, minimized, and commutator bounds all provide rigorous performance guar-
antees, even the strongest of these—the commutator bound—is likely to be loose in practical
applications. To overcome this, we consider a non-rigorous bound based on extrapolating the ac-
tual error seen in small instances using classical simulation. The details of how we compute this
empirical bound are described in Section F.3.

Although we focus on improving the gate count for small instances, note that the commutator
and empirical bounds actually improve the asymptotic performance of the PF algorithm as a
function of system size. We discuss the nature of this improvement in Section I.1.

C.2 Taylor series algorithm

We now summarize the Taylor series (TS) algorithm [14]. This algorithm directly implements the
(truncated) Taylor series of the evolution operator for a carefully-chosen constant time, and repeats
that procedure until the entire evolution time has been simulated.

Denote the Taylor series for the evolution up to time t, truncated at order K, by

Ũ(t) :=

K
∑

k=0

(−itH)k

k!
. (7)

For sufficiently large K, the operator Ũ(t) is a good approximation of exp(−iHt). Using (2), we
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can rewrite Ũ(t) as a linear combination of unitaries, namely

Ũ(t) =

K
∑

k=0

(−itH)k

k!
(8)

=
K
∑

k=0

L
∑

ℓ1,...,ℓk=1

tk

k!
αℓ1 · · ·αℓk(−i)kHℓ1 · · ·Hℓk (9)

=

Γ−1
∑

j=0

βjṼj , (10)

for Γ =
∑K

k=0 L
k, where the Ṽj are products of the form (−i)kHℓ1 · · ·Hℓk , and the βj are the

corresponding coefficients such that βj > 0. (For notational convenience, we omit the dependence
of βj on t.) The TS algorithm effectively implements this linear combination.

To do this, for any t > 0 we define an isometry V(t) : H → C
Γ ⊗ H as follows. Let B be a

unitary operator on C
Γ satisfying

B|0〉 = 1√
s

Γ−1
∑

j=0

√

βj |j〉, (11)

where

s :=

Γ−1
∑

j=0

βj =

K
∑

k=0

(t(α1 + · · ·+ αL))
k

k!
. (12)

We also define

W := (B† ⊗ I) select(Ṽ )(B ⊗ I) (13)

where

select(Ṽ ) :=

Γ−1
∑

j=0

|j〉〈j| ⊗ Ṽj . (14)

It is easy to see that (〈0| ⊗ I)W (|0〉 ⊗ I) ∝ Ũ(t). More precisely, we have

W |0〉|ψ〉 = 1

s
|0〉Ũ (t)|ψ〉 +

√

1− 1

s2
|Φ〉 (15)

for |ψ〉 ∈ H and some |Φ〉 whose ancillary state is supported in the subspace orthogonal to |0〉. To
boost the amplitude to perform the desired operation, we consider the isometry

V(t) := −WRW †RW (|0〉 ⊗ I) (16)

where

R := (I − 2|0〉〈0|) ⊗ I. (17)

To ensure that V(t) implements evolution according to H nearly deterministically, we consider
evolution for time

tseg :=
ln 2

α1 + · · · + αL
. (18)
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The overall evolution is realized as a sequence of r := ⌈t/tseg⌉ segments, where the first r−1 segments
each evolve the state for time tseg and the final segment evolves the state for time trem := t−(r−1)tseg.
It can be shown that there is a choice of K with

K = O

(

log
(α1+···+αL)tseg

ǫ

log log
(α1+···+αL)tseg

ǫ

)

(19)

such that

‖(〈0| ⊗ I)V(tseg)− exp(−itsegH)‖ = O(ǫ/r). (20)

The evolution for the remaining time trem can be performed by rotating an ancilla qubit to
artificially increase the duration of the segment. Specifically, provided s < 2, we can introduce an
ancilla register in the state |0〉 and apply the rotation

|0〉 7→ s

2
|0〉 +

√

1− s2

4
|1〉. (21)

Together with the the unitary operator W , this implements the transformation

|0〉|ψ〉 7→ 1

2
|00〉Ũ (t)|ψ〉+

√
3

2
|Φ′〉 (22)

for some normalized state |Φ′〉 with (〈00| ⊗ I)|Φ′〉 = 0. Then we can proceed as before, but with
s = 2. Indeed, we also perform a similar rotation for the initial r− 1 segments to ensure that they
have s = 2 instead of a slightly smaller value. By an abuse of notation, we incorporate this rotation
into the definition of V, so that V(tseg) and V(trem) are the corresponding evolution operators for
the first r − 1 segments and the final segment.

The asymptotic gate complexity of this simulation algorithm is [14]

O

(

TL(n+ logL)
log(T/ǫ)

log log(T/ǫ)

)

, (23)

where T = (α1 + · · · + αL)t. For the Hamiltonian studied in this paper, we have T = O(n2) and
L = O(n), which gives a bound of O(n4 logn

log logn). However, the analysis in [14] assumes only that
each term in the Hamiltonian is a tensor product of Pauli gates, possibly acting nontrivially on all

of the qubits. Since our Hamiltonian is 2-local, we have a tighter bound of O(n3 log2 n
log logn) for the

asymptotic gate count, as indicated in Table 1.
To concretely implement the TS algorithm, we must replace the asymptotic statements above

with an explicit error analysis. We present the details of such an analysis in Appendix G. In
particular, Section G.1 shows how to choose K to ensure that the overall error is at most some
allowed ǫ. In addition, unlike the PF algorithm, the TS algorithm requires a measurement on the
ancilla register and succeeds probabilistically. We discuss in Section G.2 how this fact can be taken
into account to make a fair comparison between the PF and TS algorithms.

Another crucial aspect is the implementation of the select(Ṽ ) gate. In Section G.3, we discuss
how we encode the control register for this operation. Then, in Section G.4, we present a novel
method to implement select(V ) gates by walking on a binary tree, improving the gate complexity
to O(Γ) from the naive complexity of O(Γ log Γ).

It is also natural to ask whether an empirical error bound could be established for the TS
algorithm. Unfortunately, the number of ancilla qubits used by the algorithm (as shown in Figure 2)
makes direct classical simulation infeasible even for very small sizes. An alternative is to only give
an empirical bound on the remainder of the Taylor series. However, as we discuss in Section G.1,
such a bound does not give a significant improvement.
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C.3 Quantum signal processing algorithm

Now we summarize the quantum signal processing (QSP) algorithm of Low and Chuang [51, 52].
Again consider a Hamiltonian of the form (2). We have

H = α(〈G| ⊗ I) select(H)(|G〉 ⊗ I), (24)

where the first register holds an L-dimensional ancilla,

select(H) :=
L
∑

ℓ=1

|ℓ〉〈ℓ| ⊗Hℓ, (25)

(similarly to (14)), and

|G〉 := 1√
α

L
∑

ℓ=1

√
αℓ|ℓ〉, α :=

L
∑

ℓ=1

αℓ. (26)

Low and Chuang’s concept of qubitization [51] relates the spectral decompositions of H/α and

− iQ := −i
(

(2|G〉〈G| − I)⊗ I
)

select(H). (27)

Specifically, let H/α =
∑

λ λ|λ〉〈λ| be a spectral decomposition of H/α, where the sum runs over
all eigenvalues of H/α. By the triangle inequality, ‖H‖ ≤ α, i.e., |λ| ≤ 1. For each eigenvalue λ ∈
(−1, 1) ofH/α, the qubitization theorem (Theorem 2 of [51]) asserts that−iQ has two corresponding
eigenvalues

λ± = ∓
√

1− λ2 − iλ = ∓e±i arcsinλ (28)

with eigenvectors |λ±〉 = (|Gλ〉 ± i|G⊥
λ 〉)/

√
2, where

|Gλ〉 := |G〉 ⊗ |λ〉 (29)

and

|G⊥
λ 〉 :=

λ|Gλ〉 − select(H)|Gλ〉√
1− λ2

. (30)

(Eigenvalues λ± = ±1 correspond to degenerate cases that can be analyzed separately.)
The signal processing algorithm applies a sequence of operations called phased iterates. We

introduce an additional ancilla qubit and define the operator

Vφ := (e−iφσz/2 ⊗ I)
(

|+〉〈+| ⊗ I + |−〉〈−| ⊗ (−iQ)
)

(eiφσ
z/2 ⊗ I) (31)

for any φ ∈ R. Let −iQ =
∑

ν e
iθν |ν〉〈ν| be a spectral decomposition of −iQ, where the sum runs

over ν labeling all eigenvectors of −iQ. As described above, each eigenvalue λ ∈ (−1, 1) of H/α
corresponds to two eigenvalues eiθλ± of −iQ, where θλ+ = arcsin(λ) + π and θλ−

= − arcsin(λ).
Eigenvalues ±1 of −iQ correspond to degenerate cases that can be handled separately. The remain-
ing eigenspaces cannot be reached during any execution of the quantum signal processing algorithm,
so we can neglect them. Then one can show that

Vφ =
∑

ν

eiθν/2Rφ(θν)⊗ |ν〉〈ν| (32)

where
Rφ(θ) := e−iθσφ/2, σφ := cos(φ)σx + sin(φ)σy. (33)
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Thus each eigenvalue eiθν of −iQ is manifested in Vφ as an SU(2) operator Rφ(θν) acting on the
ancilla qubit.

For any positive even integer M , composing gates with the same rotation amplitude θ but with
varying phases φ1, . . . , φM yields

RφM
(θ) · · ·Rφ1(θ) = A(cos θ

2 ) I + iB(cos θ
2 )σ

z + i cos θ
2C(sin θ

2 )σ
x + i cos θ

2D(sin θ
2)σ

y (34)

for polynomials A,B,C,D of degree at most M . In the QSP algorithm, only the polynomials A
and C are used. This component can be extracted by preparing the ancilla qubit in the state
|+〉, composing the primitive rotations, and postselecting the ancilla qubit in the state |+〉. The

unwanted factor eiθν/2 may be canceled by alternating between Vφ and V †
φ+π, giving

V := V †
φM+πVφM−1

· · ·V †
φ2+πVφ1 . (35)

To perform Hamiltonian simulation by qubitization, we implement a function of θ that converts
the eigenvalue eiθλ± of −iQ to the desired phase e−iλt, namely the Jacobi-Anger expansion

ei sin(θ)t =

∞
∑

k=−∞

Jk(t)e
ikθ. (36)

To do this with a polynomial of degree M , we truncate the expansion at order q := M
2 + 1, giving

an approximation with error at most [15]

2

∞
∑

k=q

|Jk(t)| ≤
4tq

2qq!
. (37)

The angles φ1, . . . , φM that realize this expansion can be computed by an efficient classical procedure
(see Lemmas 1 and 3 of [53]).

To simulate evolution of an initial state |ψ〉, the QSP algorithm applies V to the state |+〉 ⊗
|G〉 ⊗ |ψ〉 and postselects the ancilla register of the output on the state |+〉 ⊗ |G〉. This procedure
simulates the desired evolution with error at most

8
4(αt)q

2q q!
≤ ǫ. (38)

To achieve simulation for time t and error ǫ, the QSP algorithm uses

M = O

(

αt+
log(1/ǫ)

log log(1/ǫ)

)

(39)

phased iterates [52]. For each phased iterate, the dominant part is the select(H) subroutine, which is
straightforward to implement with O(n log n) elementary gates. Overall, we see that the asymptotic
gate count in terms of the system size is O(n3 log n). (Note that by using our improved select(·)
implementation described in Section G.4, the asymptotic complexity is reduced to O(n3).)

Operationally, post-selection of the ancilla is achieved by measurement. If the outcome is
|+〉⊗ |G〉, then a state close to e−iHt|ψ〉 is produced; otherwise, the algorithm fails. In Section H.1,
we compute the success probability of the QSP algorithm and discuss how it can be fairly compared
with the deterministic PF algorithm.

When implementing the QSP algorithm, we eliminate unnecessary gates wherever possible to
reduce the gate count. In particular, note that in place of (31), Low and Chuang define the phased
iterate as

V ′
φ := (e−iφσz/2 ⊗ I)

(

|+〉〈+| ⊗ I + |−〉〈−| ⊗
(

Z−π/2(−iQ)Zπ/2

)

)

(eiφσ
z/2 ⊗ I), (40)
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where Zϕ := (1 + e−iϕ)|G〉〈G| − I is a partial reflection about |G〉. Our modified definition (31)
saves two partial reflections in each phased iterate—saving O(n2 log n) gates overall—but has the
same behavior. This and other optimizations of the implementation are detailed in Section H.2.

The QSP algorithm requires more substantial classical preprocessing than the PF and TS ap-
proaches. Computing the angles φ1, . . . , φM requires finding the roots of a polynomial of degree
2M , and these roots must be determined to high precision. Thus we were unable to compute the
parameters of the algorithm explicitly except in very small instances.

As discussed in Section 3.3, we address this issue by considering a segmented version of the
algorithm. We discuss this approach further in Section H.3. Here we briefly consider how the
segmented implementation impacts the asymptotic performance of the QSP algorithm.

Suppose we fix a positive even integer M , the maximal number of phased iterates for which
the angles φ1, . . . , φM can practically be computed. As shown in Section H.3, it suffices to use
r = O(t( tǫ)

2/M ) segments to ensure overall error at most ǫ. In the instance of Hamiltonian simulation

considered in this paper, with t = n and α = O(n), we have r = O(n2+4/M ) segments. Within
each segment, the number of phased iterates is M , which is independent of the system size. The
circuit size of each phased iterate is O(n) using the improved select(V ) implementation described in
Section G.4. Thus the segmented algorithm has gate complexity O(n3+4/M ). In our implementation
of the segmented algorithm, we use M = 28, so the exponent is about 3.14.

We also consider empirical bounds for the QSP algorithm. Specifically, we find an improved
empirical estimate of the truncation error of the Jacobi-Anger expansion. This partial empirical
bound leads to a small reduction in the gate count, as discussed further in Section H.4. As with
the TS algorithm, the need for ancilla qubits in the QSP algorithm makes it difficult to establish
a comprehensive empirical bound by performing a full simulation on a classical computer. Fixing
the target error ǫ = 10−3, we investigate the empirical performance of QSP for systems of size 5 to
9. Our preliminary data suggest that the gate count is not significantly improved even with such
an empirical bound, so we do not consider such a bound in our study.

D System-size dependence for other simulation algorithms

In this appendix, we discuss the asymptotic gate complexity of the Hamiltonian simulation algo-
rithms we chose not to implement.

For a local Hamiltonian, the gate complexity of the algorithm based on fractional queries is [13]

O

(

τ̃
log(τ̃ /ǫ)

log log(τ̃ /ǫ)
(log(τ̃ /ǫ) + n)

)

(41)

where τ̃ = L‖H‖maxt, with ‖H‖max denoting the largest entry of H in absolute value (note that
this expression slightly tightens the one given in the main statement of Theorem 1.1 of [13]; see
the end of the proof of that theorem for details). We have L = Θ(n) and ‖H‖max = Θ(n), so
τ̃ = O(n3), and the gate complexity is O(n4 logn

log logn).
Similarly, the gate complexity of the algorithm based on a linear combination of quantum walk

steps is [15, Theorem 1]

O

(

τ
(

n+ log5/2(τ/ǫ)
) log(τ/ǫ)

log log(τ/ǫ)

)

(42)

where τ = d‖H‖maxt with d denoting the sparsity of H. Since d = Θ(n), we find a gate complexity
of O(n4 logn

log logn).
We now turn to the simulation algorithm based on quantum walk [12, Theorem 1]. Previous

work on this approach has not focused on the gate complexity, so we evaluate it here. The algorithm
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proceeds as follows. First we perform phase estimation on the quantum walk with one bit of
precision. We then apply O(d‖H‖maxt) steps of a lazy quantum walk. Finally, we invoke phase
estimation again with O(d‖H‖maxt) applications of the walk operator and use this estimate to
correct the phase, further improving the accuracy.

The above procedure uses O(d‖H‖maxt) = O(n3) quantum walk steps, which dominates the
cost of the Fourier transform in the phase estimation procedure (since the estimated phase has
log(d‖H‖maxt) = O(log n) bits, the Fourier transform has complexity O(log n log log n)) and the co-
herent computation of the sine function to correct the phase (with complexity O(M(log n) log log n) =
poly(log n), whereM(k) is the complexity of multiplying k-bit numbers [17]). Thus, to understand
the asymptotic gate complexity of the algorithm, it suffices to study the gate complexity of per-
forming a quantum walk step.

The quantum walk operator is the product of a swap (with complexity O(n)) and the reflection

2n
∑

x=1

|x〉〈x| ⊗ (2|φx〉〈φx| − I), (43)

where

|φx〉 :=
1√
2n

2n
∑

y=1

|y〉
[

√

H∗
xy

X |0〉 +
√

1− |Hxy|
X |1〉

]

(44)

with

X :=
1

dt
max

{

⌈‖H‖t/
√
ǫ⌉, ⌈‖H‖maxdt⌉

}

. (45)

To implement the walk operator, it suffices to give procedures for preparing |φx〉 and reflecting
about |0〉. The reflection operator can be implemented by performing an X gate on each qubit,
applying a controlled-Z gate with n − 1 control qubits, and again performing an X gate on each
qubit, for a total cost of O(n). Thus it remains to understand the cost of preparing |φx〉.

The algorithm uses oracles OF and OH acting as

OF |x, ℓ〉 = |x, f(x, ℓ)〉 (46)

and
OH |x, y, z〉 = |x, y, z ⊕Hxy〉, (47)

where f(x, ℓ) is the column index of the ℓth nonzero element in row x. Reference [12] observes that
|φx〉 can be prepared with cost

O(n+ cost(OF ) + cost(OH)). (48)

Therefore, it suffices to separately understand the cost of implementing OF and OH for our Hamil-
tonian.

Recall that the Hamiltonian takes the form

H =

n
∑

j=1

(~σj · ~σj+1 + hjσ
z
j ). (49)

For any j ∈ {1, . . . , n}, the term ~σj · ~σj+1 acts on the jth and (j + 1)st qubits according to the
matrix









1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1









. (50)
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Thus the nonzero elements of row x of H, aside from the diagonal, correspond to the ways of
swapping two adjacent bits in the binary representation of x. There are at most n+1 such nonzero
elements, so we can suppose that ℓ ∈ {1, . . . , n + 1} in (46), where (say) ℓ = n+ 1 corresponds to
the diagonal element.

To implement OF , we begin by making a copy of the first register using O(n) CNOT gates,
performing

|x, ℓ〉 7→ |x, x, ℓ〉. (51)

Then, conditioned on the value of ℓ ∈ {1, . . . , n}, we swap the ℓth and (ℓ+ 1)st bits of the second
register, giving

|x, x, ℓ〉 7→ |x, f(x, ℓ), ℓ〉. (52)

This can be done with complexity O(n log n), since it is a select(·) gate where the selection register
has n + 1 possible states and the target gates act only on two qubits. To uncompute the third
register, note that there is a classical algorithm with running time O(n) that computes ℓ from x and
f(x, ℓ): we just compare the two strings and detect which pair of bits are swapped. This procedure
can be made reversible by standard techniques. Therefore, we can erase |ℓ〉 and thereby implement
OF with gate complexity O(n log n).

To implement OH , we use a classical algorithm that, given the row and column indices (x, y),
outputs the corresponding matrix element Hxy. The (x, x) diagonal element is easy to compute
from the binary representation of x: every adjacent pair of bits gives a contribution of +1 if the
bits agree and −1 if they disagree, and the jth bit gives an additional contribution of hj if the
bit is 0 and −hj if the bit is 1. For x 6= y, the off-diagonal element Hxy is 2 if x and y differ by
swapping some adjacent pair of distinct bits, and is 0 otherwise. Since all these calculations can be
performed in time O(n), the complexity of implementing OH is O(n).

Altogether, we see that the gate complexity of the quantum walk simulation is O(n4 log n), as
shown in Table 1.

In fact, our improved implementation of select(·) gates in Lemma G.7 shows that OF can be
implemented in time O(n). With this improvement, the quantum walk simulation can be performed
slightly faster, in time O(n4).

E Circuit synthesis and optimization

We implemented quantum simulation algorithms in the Quipper programming language [32]. Quip-
per is a circuit description language equipped with many high-level circuit combinators (e.g., circuit
iteration and circuit reversal) that allow for a concise specification of complex quantum circuits.
Quipper also supports a hierarchical circuit structure that allows for the efficient manipulation of
the very large quantum circuits considered here. We made full use of these features. The Quipper
source code for our implementations, together with sample output circuits and optimized versions
thereof, are available in a public repository [26].

E.1 Overview of algorithm implementations

E.1.1 Product formulas

We implement simulation algorithms using product formulas of order 1, 2, 4, 6, and 8. For each
order, we implement various time-slicing methods as discussed in Section C.1 and Appendix F.
Specifically, we implement the analytic, minimized, and empirical bounds for all orders. For first-
, second-, and fourth-order algorithms, we also implement the commutator bound. Overall, we
consider 18 different types of product formula algorithm.
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The product formula algorithms are the simplest of the simulation algorithms we consider. To
simulate the evolution for a short time, these algorithms simply exponentiate each term of the
Hamiltonian (which in our case is always proportional to a 1- or 2-qubit Pauli operator) in a
carefully-chosen sequence. Simulation for a longer time is then obtained by iterating this sequence.
The duration of the individual evolutions and the total number of repetitions is determined using
an appropriate error bound. The iteration is easily realized using Quipper’s built-in iteration
combinator.

E.1.2 Taylor series

The TS algorithm is more involved than the PF algorithm, using more complicated subroutines.
Our implementation is based on a mixed unary-binary encoding of the control register, as explained
in Section G.3. The implementation consists of several subroutines, including two distinct state
preparation subroutines, the select(V ) procedure discussed in Section G.4, and the reflection about
|0〉. The first state preparation subroutine maps |0〉 into the state

∑L
l=1

√
αl|l〉, where {αl}Ll=1

are the coefficients of terms in the target Hamiltonian. This is accomplished through the generic
state preparation algorithm described in [69]. The second state preparation subroutine generates a
state proportional to

∑K
k=0

√

tk/k!|1k0K−k〉 starting with the basis state |0〉, for which the generic
method [69] is suboptimal. Instead, we use the state preparation procedure described in [14],
applying a rotation on the first qubit, followed by rotations on qubits k = 2 to K controlled by
the qubit k−1. We develop our own implementation of the select(V ) operation, as described in
Section G.4. The reflection about |0〉 is implemented as a multiply-controlled Z gate, following the
construction in [55] that uses ancillas in the state |0〉.

E.1.3 Quantum signal processing

We implement two versions of the QSP algorithm. First, we consider the original version of the
algorithm as described in Section C.3. In choosing the parameters for this implementation, we use
the empirical estimate of the remainder of the Jacobi-Anger expansion described in Section H.4.
Unfortunately, our implementation of the classical computation of the rotation angles [53] is only
able to handle very small system sizes. Instead, to generate gate counts, we use randomly-selected
angles as placeholder values. Thus the circuits constructed by our implementation have the correct
structure (and in particular, give the correct gate count over the Clifford+Rz basis, and a good
approximation over the Clifford+T basis), but do not actually implement the desired unitary.

We also implement a segmented version of the QSP algorithm as discussed near the end of
Section C.3 and detailed in Section H.3. In this case, we invoke a rigorous error bound, and we are
able to correctly compute all parameters of the algorithm. However, the rotation angle computation
is involved and uses high-precision arithmetic. For this reason, we compute these parameters off-line
using Mathematica and store the results in a look-up table that is accessed by the Quipper program
to construct the quantum circuit. Thus our Quipper implementation can only produce circuits for
the system sizes for which these values have been precomputed. The Mathematica scripts are
available as part of our implementation [26] so that the interested reader can compute the required
parameters and add them to the look-up tables if additional system sizes are of interest.

E.2 Gate counts and synthesis

We express all algorithms using Clifford gates (including cnot) and single-qubit z-rotations by ar-
bitrary angles. We use Quipper’s standard gate-counting feature to produce the first set of resource
estimates (in the Clifford+Rz basis). To obtain our second set of estimates (in the Clifford+T basis),
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we must approximate z-rotations by Clifford+T circuits. These approximations are obtained using
the optimal algorithm of Ross and Selinger [66] (which builds upon the exact synthesis algorithm
of Kliuchnikov, Maslov, and Mosca [45]).

Note that a better approach to decomposing Rz gates into Clifford+T circuits might be to rely
on the repeat-until-success (RUS) strategy of [16]. This reduces the T -count by a factor of about 2.5
on average, at the cost of using additional resources in the form of measurements, classical feedback,
and additional cnot gates. One may combine RUS decomposition with Campbell’s unitary mixing
approach [20] to further reduce the T -count by a factor of about 2. Finally, rather than using only
the T = Rz(π/4) gate, one may also distill Rz(π/6) with comparable or better efficiency as the
T gate [18]. Using Rz(π/6) along with the T gate in the RUS circuits [16] together with unitary
mixing [20], we expect an improvement in the resource count for a fault-tolerant implementation by
a factor of 5 or more. Alternatively, one might employ the gate distillation techniques of [29], which
could also significantly reduce the cost of implementing fault-tolerant gates. We leave a detailed
investigation of such possible improvements as a subject for future work.

When producing Clifford+T gate counts for the non-segmented QSP algorithm, we synthesize
rotations that are incorrect, since we are unable to compute the exact rotation angles. Since
the number of Clifford+T gates required to synthesize a given rotation depends on its angle, the
resulting gate counts are not, strictly speaking, precise. Nevertheless, we expect the produced gate
counts to accurately represent the true counts. Since the rotation angles are randomly chosen,
their cost is that of a typical angle (roughly 3 log(1/τ) where τ is the approximation precision).
Furthermore, because we synthesize many rotations, occurrences of over/underestimation of the
specific gate counts average out over the entire circuit by the law of large numbers. The cost of
the approximation therefore depends primarily on the precision—which, in turn, depends on the
number of rotations in the overall circuit—but not on the individual rotation angles.

To approximate a given Hamiltonian e−iHt to precision ǫ with a Clifford+T circuit, we divide
the allowed error ǫ between gate synthesis and simulation algorithm errors. In our implementation,
we allocate ǫ/2 to the simulation error and ǫ/2 to the gate synthesis error. The latter is then divided
by the total number of z-rotations appearing in the circuit. While anecdotal evidence suggests that
such an even division of ǫ between simulation and synthesis is a good choice, we leave it as an
avenue for future research to determine whether a more subtle partition should be preferred.

E.3 Optimization

We also employ a circuit optimizer [57] that uses a variety of techniques to reduce gate counts
in an automated way. The optimizer uses various circuit equivalences to induce quantum gate
commutations, mergers, and cancellations.

Many of the subcircuits found in the TS and QSP algorithms are based on Toffoli gates. In our
unoptimized circuits, we simply replace each Toffoli gate with an optimal Clifford+T implementa-
tion [2]. However, there are many ways to write the Toffoli gate as a Clifford+T circuit (e.g., some
gates in an implementation may commute, controls can be interchanged, and the circuit can be
reversed and/or complex conjugated since it is real and self-inverse). Carefully choosing when to
use which decomposition can enable additional gate cancellations. For this reason, we outsource
Toffoli gate decomposition to the optimizer.

Once the circuits are expressed over the Clifford+Rz basis, our optimizer first performs a se-
quence of rewrites to reduce the number of Hadamard gates. The resulting circuit is more amenable
to further optimization since it typically contains larger chunks that can be expressed using so-called
phase polynomials [2, 57]. Then we identify pairs of gates that can be canceled or merged (allowing
the gates in each pair to be separated by a subcircuit through which one of the gates commutes,
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according to a fixed set of commutation rules). Finally, we use the phase polynomial representation
over {cnot, Rz} to further lower the Rz count of the circuit. This representation can be used to
identify Rz gates that are applied to the same linear Boolean function of the input, and thereby
merge them, even if they originally correspond to distant gates. Merging such rotations can enable
additional gate commutations, leading to more optimizations. We repeat the entire sequence of
optimization procedures until no more gate count reduction is achieved.

Our optimizer comes with “light” and “heavy” options [57]. In general, the heavy version finds
more reductions, but is more computationally intensive. We used the light version of the optimizer
to obtain the results reported in this paper since we do not expect the heavy version to change our
conclusions qualitatively.

E.4 Correctness

We carry out a number of tests to verify correctness of our circuit-level implementations. We
simulate entire PF circuits for systems with up to 15 qubits and check for proximity to the ideal
evolution operator by evaluating the spectral norm distance. We also simulate the entire segmented
QSP circuit for a system of size 5 and compare the outcome of the circuit to the ideal operator in
the same sense. Unfortunately, the number of ancillas makes full simulation for larger instances
of the TS algorithm prohibitively expensive. Thus, in lieu of full simulation, we test individual
subroutines for correctness: we verify the reflection and state preparation subroutines for systems
of up to 15 qubits, and test various instances of the select(V ) circuit, including its controlled
versions, for systems of size 5. Finally, we test the output of the optimizer by simulating and
comparing circuits before and after optimization [57].

F Product formula implementation details

The main issue involved in implementing product formula (PF) algorithms—as introduced in
Section C.1—is to establish error bounds that determine how finely to split the evolution so that
some target error is achieved. In this section, we present explicit error analysis for PF algorithms
that yields effective methods for computing values of r that ensure the error is at most ǫ.

First, we establish error bounds that provide a proven guarantee that the simulated evolution is
ǫ-close to the ideal evolution. We present three such bounds, which we call the analytic, minimized,
and commutator bounds. The analytic and minimized bounds, presented in Section F.1, follow
essentially the same strategy as in previous work [11]. The commutator bound, presented in
Section F.2, is substantially more involved, using the structure of commutators between terms in
the Hamiltonian to improve the result.

Second, in Section F.3, we present empirical error bounds, which are obtained by extrapolating
numerical data. Since they ostensibly describe the true performance of PF algorithms, the empirical
bounds result in smaller gate counts than the rigorous bounds. However, while the empirical bounds
are plausible, they do not provide a guarantee about the actual distance between the simulated
evolution and the ideal evolution, unlike with rigorous bounds.

Throughout, we quantify the simulation error with respect to the spectral norm. Note that
for a unitary process, the diamond norm distance is at most twice the spectral norm distance [15,
Lemma 7].
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F.1 Analytic and minimized bounds

Reference [11] gives an explicit error bound for Suzuki product formulas. Using similar techniques,
we can also give an explicit bound for the first-order case. We present these bounds here, tightening
the analysis wherever possible.

First, recall some useful properties of Taylor expansions. For any k ∈ N and any analytic
function f : C → C with f(x) =

∑∞
j=0 ajx

j, let Rk(f) :=
∑∞

j=k+1 ajx
j denote the remainder of the

Taylor series expansion of f up to order k.

Lemma F.1. If λ ∈ C and H1, . . . ,HL are Hermitian, then
∥
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∥
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∥

∥
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Proof. We have
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so
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Using the triangle inequality and submultiplicativity of the norm, we find
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Finally, similarly as in (54) and (55), we have
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which completes the proof.

Lemma F.2. If λ ∈ C, then |Rk(exp(λ))| ≤ |λ|k+1

(k+1)! exp(|λ|).

Proof. Using the Taylor expansion of the exponential function, we have
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∞
∑
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(k + 1)!
(59)

=
|λ|k+1

(k + 1)!
exp(|λ|), (60)

which completes the proof.
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Now we give an explicit error bound for the first-order product formula.

Proposition F.3. Let r ∈ N and t ∈ R. Let H1, . . . ,HL be Hermitian operators, and Λ :=
maxj‖Hj‖. Then
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Proof. Let λ = −it. We start by considering ‖exp(λ
∑L

j=1Hj)−
∏L

j=1 exp(λHj)‖. Using Lemma F.1
and Lemma F.2, we find
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≤ 2R1(exp(|λ|LΛ)) (65)

≤ (|λ|LΛ)2 exp(|λ|LΛ). (66)

We then divide the evolution into r segments and apply the above inequality to each segment,
giving
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which completes the proof.

A similar bound holds for the higher-order case, as follows.

Proposition F.4. Let r ∈ N and t ∈ R. Let H1, . . . ,HL be Hermitian operators, and Λ :=
maxj‖Hj‖. Then
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We omit the proof, which follows along the same lines as the proof of Proposition F.3.
When performing quantum simulation, our goal is to ensure that the error is at most some given

ǫ. Thus, to apply Proposition F.3 and Proposition F.4, we must choose a value of r that ensures
the right-hand side is at most ǫ. One approach [11] is to give a closed-form expression for some
suitable r as a function of ǫ (and other simulation parameters). We call the resulting error bound
an analytic bound.
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Definition 1. Let t ∈ R and ǫ > 0. Let H1, . . . ,HL be Hermitian operators, and Λ := maxj‖Hj‖.
Then the first-order analytic bound is given by

r1 =

⌈

max

{

L|t|Λ, e(LtΛ)
2

ǫ

}⌉

(71)

and the (2k)th order analytic bound is given by

r2k =

⌈
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{

2L5k−1Λ|t|, 2k

√

e(2L5k−1Λ|t|)2k+1

3ǫ

}

⌉

. (72)

Analytic bounds can be computed efficiently and result in circuits approximating the time
evolution up to the required precision. However, because the error estimates are pessimistic, the
corresponding circuits are unnecessarily large.

A slight improvement can be obtained by searching for the smallest possible r that satisfies
the constraints given by Proposition F.3 and Proposition F.4. We call the resulting error bound a
minimized bound.

Definition 2. Let t ∈ R and ǫ > 0. Let H1, . . . ,HL be Hermitian operators, and Λ := maxj‖Hj‖.
Then the first-order minimized bound is given by

r1 = min
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r ∈ N :
(LΛt)2

r
exp
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LΛ|t|
r
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≤ ǫ

}

(73)

and the (2k)th-order minimized bound is given by

r2k = min
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3r2k
exp
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2L5k−1Λ|t|
r

)
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}
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Minimized bounds can be computed efficiently using binary search. First, we compute the error
bound with r = 1. If the result is within our desired accuracy ǫ, we stop; otherwise, we double r
and repeat the procedure. This allows us to bracket the value of r in logarithmic time. Then we
perform binary search to determine the precise value of r.

F.2 Commutator bounds

If all terms in the Hamiltonian commute, then even the lowest-order product formula has no error.
Intuitively, if many pairs of terms commute, then the error should be small. Indeed, the second-
order contribution to the error in the first-order formula involves commutators between all pairs of
terms, and this fact can be used to strengthen the bound [50].

In this section, we present improved error bounds that take advantage of commuting pairs of
terms in the Hamiltonian. In particular, we give commutator bounds for the second- and fourth-
order formulas, whose constructions can in principle be adapted to higher-order cases. To the
best of our knowledge, these are the first error bounds for higher-order product formulas that take
advantage of commutator structure.

In Section F.2.1, we present abstract versions of the commutator bounds, stated in terms of
coefficients that count the number of terms in the Hamiltonian with particular commutation rela-
tions. We specialize these bounds to our particular system in Section F.2.2, using the symmetry of
our Hamiltonian to substantially simplify application of the bounds.
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F.2.1 Abstract commutator bounds

We begin by presenting a bound for the first-order formula as described in [50], giving an explicit
bound for the higher-order terms.

Theorem F.5 (First-order commutator bound). Let H1, . . . ,HL be Hermitian operators with norm
at most Λ := maxj‖Hj‖. Let C := |{(Hi,Hj) : [Hi,Hj ] 6= 0, i < j}| be the number of non-
commuting pairs of operators, and let t ∈ R. Then

∥

∥

∥

∥

∥

∥

exp



−it
L
∑

j=1

Hj



−





L
∏

j=1

exp

(

− it
r
Hj

)





r∥
∥

∥

∥

∥

∥

≤ C
(Λt)2

r
+

(LΛ|t|)3
3r2

exp

(

LΛ|t|
r

)

. (75)

Proof. We show that
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which implies the claimed result by the triangle inequality. The upper bound (76) can be established
by explicitly computing the second-order error and bounding the higher-order errors by the norm
of the remainder R2. The second-order error is bounded as follows:
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≤ C|λ|2Λ2. (79)

The rest of the proof proceeds similarly to the second half of the proof of Proposition F.3; we omit
the details.

Theorem F.6 (Second-order commutator bound). Let H1, . . . ,HL be Hermitian operators with
norm at most Λ := maxj‖Hj‖, where each Hj is a tensor product of Pauli operators. Define the
augmented set of Hamiltonians

H̃j =

{

Hj, 1 ≤ j ≤ L

H2L−j+1, L+ 1 ≤ j ≤ 2L.
(80)

Let f(i, j) = 1 if H̃i, H̃j commute and f(i, j) = −1 otherwise. Finally, let

D := |{(i, j) : f(i, j) = −1, i 6= j}|, (81)

T1 := |{(i, j, k) : f(i, j) = f(j, k) = f(i, k) = 1, i < j < k}|, (82)

T2 := |{(i, j, k) : f(i, j) = 1, f(j, k) = f(i, k) = −1, i < j < k}|
+ |{(i, j, k) : f(i, j) = f(i, k) = −1, f(j, k) = 1, i < j < k}|, (83)

T3 := |{(i, j, k) : f(i, j) = f(j, k) = −1, f(i, k) = 1, i < j < k}|, (84)

T4 := |{(i, j, k) : all other cases}| (85)
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where i, j, k ∈ {1, . . . , 2L}, and let t ∈ R. Then

∥

∥

∥

∥

∥

∥

exp



−it
L
∑

j=1

Hj



−
[

S2

(

− it
r

)]r
∥

∥

∥

∥

∥

∥

≤ Λ3|t|3
r2

{

1

24
D +

1

12
T2 +

1

6
T3 +

1

8
T4

}

+
4(LΛt)4

3r3
exp

(

2LΛ|t|
r

)

. (86)

Proof. As in the proof of Theorem F.5, we explicitly compute the third-order error and bound the
higher-order terms by R3. First we show that the first-order formula

∥

∥

∥

∥

∥

∥

exp



λ
L
∑

j=1

Hj



−
L
∏

j=1

exp(λHj)

∥

∥

∥

∥

∥

∥

(87)

has a third-order error of at most

|λ|3Λ3

(

1

3
D̄ +

2

3
T̄2 +

4

3
T̄3 + T̄4

)

, (88)

where the coefficients D̄, T̄2, T̄3, T̄4 are defined as in (81)–(85), but with respect to the original
Hamiltonians {Hj}Lj=1 instead of {H̃j}2Lj=1.

The third-order term in exp(λ
∑L

j=1Hj) is

1

3!

(

λ

L
∑

j=1

Hj

)3

=
λ3

6

∑

i,j,k

HiHjHk, (89)

whereas the third-order term in
∏L

j=1 exp(λHj) is

λ3

6

∑

i

H3
i +

λ3

2

∑

i<k

H2
iHk +

λ3

2

∑

i<k

HiH
2
k + λ3

∑

i<j<k

HiHjHk

=
λ3

6

∑

i

H3
i +

λ3

2

∑

i 6=k

H2
iHk + λ3

∑

i<j<k

HiHjHk, (90)

where we have used the fact that the square of any Pauli operator is the identity. Taking the
difference gives

λ3

6

∑

i 6=j

Hi[Hj,Hi] +
λ3

6

∑

i,j,k
pairwise different

HiHjHk − λ3
∑

i<j<k

HiHjHk. (91)

The norm of the first term is at most
1

3
|λ|3Λ3D̄, (92)
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whereas the last two terms can be written as follows:

λ3

6

∑

i1,i2,i3
pairwise different

Hi1Hi2Hi3 − λ3
∑

i1<i2<i3

Hi1Hi2Hi3

=
λ3

6

∑

i1<i2<i3

∑

σ∈Sym(3)

Hiσ(1)
Hiσ(2)

Hiσ(3)
− λ3

∑

i1<i2<i3

Hi1Hi2Hi3 (93)

=
λ3

6

∑

i1<i2<i3

(

1 + f(1, 2) + f(2, 3) + f(1, 2)f(1, 3)f(2, 3) (94)

+ f(1, 3)f(1, 2) + f(1, 3)f(2, 3)
)

Hi1Hi2Hi3 − λ3
∑

i1<i2<i3

Hi1Hi2Hi3 . (95)

(Here Sym(3) denotes the symmetric group on three elements.) By performing case analysis, we
can evaluate the coefficients and upper bound the norm by

|λ|3Λ3

(

2

3
T̄2 +

4

3
T̄3 + T̄4

)

. (96)

Combining (92) and (96), we obtain the claimed upper bound (88) for the third-order error in the
first-order formula.

Now we consider the second-order formula. Similarly to the proof of Theorem F.5, we begin by
proving the bound

∥

∥

∥

∥

∥

∥

exp



λ
L
∑

j=1

Hj



− S2(λ)

∥

∥

∥

∥

∥

∥

≤ (|λ|Λ)3
(

D

24
+
T2
12

+
T3
6

+
T4
8

)

+
4

3
(L|λ|Λ)4 exp(2L|λ|Λ), (97)

which implies (86) by the triangle inequality.
To establish (97), we apply (88) to the augmented Hamiltonian list {H̃j}2Lj=1 with λ replaced by

λ
2 . This shows that the third-order error is at most

|λ|3Λ3

8

(

D

3
+

2T2
3

+
4T3
3

+ T4

)

. (98)

The higher-order errors can be bounded by a routine calculation as

R3



exp



λ
L
∑

j=1

Hj



− S2(λ)



 ≤ 2R3(exp(2L|λ|Λ)) ≤ 2
(2L|λ|Λ)4

4!
exp(2L|λ|Λ). (99)

This completes the proof of (97). The remainder of the proof proceeds similarly to the second half
of the proof of Proposition F.3.

A similar bound holds for the fourth-order formula, as follows.

Theorem F.7 (Fourth-order commutator bound). Let H1, . . . ,HL be Hermitian operators with
norm at most Λ := maxj‖Hj‖, where each Hj is a tensor product of Pauli operators. Define the
augmented set of Hamiltonians

H̃j =

{

Hj−2hL, 2hL+ 1 ≤ j ≤ (2h+ 1)L

H2(h+1)L−j+1, (2h + 1)L+ 1 ≤ j ≤ 2(h+ 1)L
h ∈ {0, 1, 2, 3, 4}. (100)
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Let f(i, j) = 1 if H̃i, H̃j commute and f(i, j) = −1 otherwise. Finally, let

Na := |{(i, j) : f(i, j) = a1, i < j}| (101)

Nb1b2b3 := |{(i, j, k) : f(i, j) = b1, f(i, k) = b2, f(j, k) = b3, i < j < k}| (102)

Nc1...c6 := |{(i, j, k, l) : f(i, j) = c1, f(i, k) = c2, f(i, l) = c3,

f(j, k) = c4, f(j, l) = c5, f(k, l) = c6, i < j < k < l}| (103)

Nd1...d10 := |{(i, j, k, l,m) : f(i, j) = d1, f(i, k) = d2, f(i, l) = d3,

f(i,m) = d4, f(j, k) = d5, f(j, l) = d6, f(j,m) = d7, f(k, l) = d8,

f(k,m) = d9, f(l,m) = d10, i < j < k < l < m}| (104)

where i, j, k, l,m ∈ {1, . . . , 10L}, let t ∈ R, and let p := 1/(4 − 41/3). Then
∥

∥

∥

∥

∥

∥

exp
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∑
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−
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(

− it
r

)]r
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∥

∥
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≤
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2
Λ|t|

)5 1

5!r4

{

∑

a∈±1

CaNa +
∑

b1,b2,b3∈±1

Cb1b2b3Nb1b2b3

+
∑

c1,...,c6∈±1

Cc1...c6Nc1...c6 +
∑

d1,...,d10∈±1

Cd1...d10Nd1...d10

}

+ 2
(5(4p − 1)LΛt)6

6! · r5 exp

(

(5(4p − 1)LΛ|t|
r

)

(105)

for some real coefficients Ca, Cb1b2b3 , Cc1...c6, Cd1...d10 .

We omit the proof, which proceeds along similar lines to that of Theorem F.6. Note that similar
bounds also hold for higher-order formulas.

The coefficients Ca, Cb1b2b3 , Cc1...c6 , Cd1...d10 can in principle be determined by a computer
program. The list of coefficients is long, so we omit it here. In Section F.2.2, we give a specialized
version of this theorem that can be applied to the Hamiltonian (1) without explicitly computing
all the coefficients.

To give an idea of how the bound is proved, we show how to determine the coefficient C−1 in
(105). Similar arguments can be used to determine all the coefficients in the bound.

First consider the fifth-order terms of the expression

exp





L
∑

j=1

Hjλ



− exp(H1λ) · · · exp(HLλ). (106)

The coefficient C−1 of N−1 counts the pairs of non-commuting terms Hi and Hj. The second term
in (106) contributes

λ4

4!
λ
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4
j

)
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2
j +H2

i H
3
j

)

, (107)

whereas the first term in (106) contributes
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∑

i 6=j

(

H4
iHj +H3

iHjHi +H2
iHjH

2
i +HiHjH
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i +HjH
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)
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i 6=j
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iHjHiHj +H2
i H

2
jHi +HiHjH
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iHj +HiHjHiHjHi

+HiH
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3
i Hj +HjH

2
iHjHi +HjHiHjH

2
i +H2

jH
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.

(108)
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Since we assume the terms of the Hamiltonian are tensor products of Pauli operators, we can
interchange the order of multiplication, possibly introducing minus signs. Thus (108) equals

λ5

5!

∑

i<j

((

3 + 2f(i, j)
)

H4
i Hj +

(

3 + 2f(i, j)
)

HiH
4
j

)

+
λ5

5!

∑

i<j

((

6 + 4f(i, j)
)

H3
i H

2
j +

(

6 + 4f(i, j)
)

H2
iH

3
j

)

. (109)

Subtracting (109) from (107) and setting f(i, j) = −1, we find

λ5

5!

∑

i<j

(

4H4
i Hj + 4HiH

4
j + 8H3

i H
2
j + 8H2

i H
3
j

)

, (110)

whose spectral norm is bounded by
|λ|5
5!

24Λ5N−1. (111)

Comparing the result to (105), we find that C−1 = 24.

F.2.2 Concrete commutator bounds

To apply the above commutator bounds, we must compute the number of tuples of terms in the
Hamiltonian satisfying certain commutation relations (e.g., equations (101)–(104) for the fourth-
order bound). While this can be done in polynomial time provided the degree is constant, a direct
approach is prohibitive in practice. For example, consider the problem of counting 5-tuples of Θ(n)
terms, as required for the fourth-order commutator bound. A naive iteration over all 5-tuples takes
time O(n5), and the multiplicative constant is large since our Hamiltonian gives rise to 40n terms
H̃i. Thus a direct computation can be infeasible even for small n.

However, for the Hamiltonian (1), we show that each number of tuples is given by a low-
degree polynomial in n. In turn, this means that the lowest-order contribution to the error is
also a polynomial in n. Thus, by performing polynomial interpolation on a constant number of
numerically-obtained values, we can determine a closed-form expression for general n. A similar
result holds for other Hamiltonians with appropriate symmetries, so this approach could be applied
more broadly.

We first assume the Hamiltonian acts locally on a line (in particular, we assume open boundary
conditions instead of periodic ones). For example, we could consider the Hamiltonian

n−1
∑

j=1

(

~σj · ~σj+1 + hjσ
z
j

)

, (112)

which is simply the Heisenberg model (1) without the boundary term, and without the local mag-
netic field on the rightmost spin (that term could also be handled, but we exclude it to simplify
the presentation). We show that if a counting problem for such a Hamiltonian is oblivious (defined
below), then the result is a polynomial in n. We then show that a similar property holds for Hamil-
tonians with periodic boundary conditions, giving a method for evaluating the commutator bound
for our model system.

We focus on the list of terms in the Hamiltonian to be applied in each segment of a product
formula. Specifically, consider n qubits arranged on a line, and suppose we are given Hermitian
operators G1, . . . , Gν with values d1, . . . , dν ∈ {−1, 1} indicating shift directions. We assume that
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each term Gi acts nontrivially only on the first k qubits if di = 1 or on the last k qubits if di = −1.
This determines an ordered list of length µ := ν(n − k + 1) including all translations of the given
terms, of the form

(

G1, R
d1G1R

−d1 , . . . , Rd1(n−k)G1R
−d1(n−k),

G2, R
d2G2R

−d2 , . . . , Rd2(n−k)G2R
−d2(n−k),

...

Gν , R
dνGνR

−dν , . . . , Rdν(n−k)GνR
−dν(n−k)

)

, (113)

where R is the operator that shifts the qubits right by one position. For each i ∈ JµK := {1, . . . , µ},
let Hi denote the ith term in this list.

In the example (112), the n-qubit Hamiltonian consists of 4(n − 1) terms. We adopt a specific
ordering of the terms, namely

σx1σ
x
2 , . . . , σ

x
n−1σ

x
n, σ

y
1σ

y
2 , . . . , σ

y
n−1σ

y
n, σ

z
1σ

z
2 , . . . , σ

z
n−1σ

z
n, σ

z
1 , . . . , σ

z
n−1. (114)

Using the fourth-order product formula, every term of the Hamiltonian repeats 10 times in a fixed
order within each segment. Thus, we obtain an ordered list of 2-local operators (i.e., k = 2) with
length µ = 40(n − 1), and we see that it has the form of (113) with ν = 40.

We now introduce two mappings, supp and ival. The mapping supp : JµK → Z
n
2 returns the

support of a term in the Hamiltonian. The support of Gi is 1 in the first k positions and 0
in the rest if di = 1, or 1 in the last k positions and 0 in the rest if di = −1. Similarly, the
support of RjGiR

−j has a 1 at positions j + 1, j + 2, . . . , j + k if di = 1, or a 1 at positions
n− j − k + 1, n − j − k + 2, . . . , n − j if di = −1. Note that the support may include positions at
which the Hamiltonian acts trivially.

To study the action of a τ -tuple of Hamiltonian operators, we take the entrywise or of all
elements of the tuple, defining

supp : Sµ
τ → Z

n
2 (115)

supp
(

{i1, . . . , iτ}
)

=

τ
∨

j=1

supp(ij). (116)

Here Sµ
τ := {S ⊆ JµK : |S| = τ} is the set of all subsets of JµK with size τ . Since the support of

each term in the Hamiltonian has Hamming weight k, the Hamming weight of supp({i1, . . . , iτ}) is
at most τk.

The mapping ival : Zn
2 → Z

τ
τk returns the interval pattern for a given subset of qubits. The

interval pattern is a list of the numbers of consecutive 1s in the string, padded with trailing 0s if
necessary to have length τk. For example, ival([1 0 1 1 0]) = [1 2 0 . . . 0].

Recall that, by assumption, every term in the Hamiltonian acts nontrivially on at most k
consecutive qubits, and its support is defined to include all k relevant positions (possibly including
ones where the Hamiltonian acts trivially). Thus any such term can occupy at most one interval
of any given interval pattern.

Our main goal is to count the number of τ -tuples of Hamiltonian operators satisfying a given
commutation pattern. We regard this as a special case of a more general task, which we call
oblivious counting.

Let f : Sµ
τ → Z2 be a binary-valued function that represents whether a tuple of operators has

some specified property. For example, when computing the fourth-order commutator bound, we
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set f({i1, i2, i3, i4, i5}) = 1 if the tuple (Hi1 , . . . ,Hi5) satisfies a given commutation pattern, and
f({i1, i2, i3, i4, i5}) = 0 otherwise. Our task now is to count the number of tuples satisfying the
property, i.e., to compute

∣

∣f−1(1)
∣

∣ =
∣

∣

{

{i1, . . . , iτ} : f
(

{i1, . . . , iτ}
)

= 1
}∣

∣. (117)

We say the counting is oblivious if, for any fixed z ∈ Z
τ
τk, the quantity

∣

∣

{

{i1, . . . , iτ} : f
(

{i1, . . . , iτ}
)

= 1, supp
(

{i1, . . . , iτ}
)

= y, ival(y) = z
}∣

∣ (118)

is identical for all n and all y ∈ Z
n
2 with ival(y) = z. In other words, an oblivious counting problem

depends only on the interval pattern of the τ -tuple, not on its precise support or the size of the
underlying system.

Our main result for counting such tuples is as follows.

Theorem F.8. Let G1, . . . , Gν be Hermitian operators with d1, . . . , dν ∈ {−1, 1}. We assume that
each term Gi acts as the identity on all but the first (if di = 1) or last (if di = −1) k qubits.
Suppose that f : Sµ

τ → Z2 induces an oblivious counting problem, as defined above. Then |f−1(1)|
is a polynomial in n.

Proof. Our task is to compute
∣

∣f−1(1)
∣

∣ =
∣

∣

{

{i1, . . . , iτ} : f
(

{i1, . . . , iτ}
)

= 1
}∣

∣ (119)

=
∑

z∈Zτ
τk

∑

y∈Zn
2

Czy(n), (120)

where

Czy(n) :=
∣

∣

{

{i1, . . . , iτ} : f
(

{i1, . . . , iτ}
)

= 1, supp
(

{i1, . . . , iτ}
)

= y, ival(y) = z
}∣

∣. (121)

We claim that

(i) a constant number of values z ∈ Z
τ
τk (independent of n) contribute to the sum; and

(ii) for fixed z ∈ Z
τ
τk, the number of y ∈ Z

n
2 such that ival(y) = z is a polynomial in n.

Claim (i) follows because we assume the size τ of each tuple and the number k of local operators
are both independent of n. To prove claim (ii), fix an interval pattern

z =
[

z1 . . . zr 0 . . . 0
]

∈ Z
τ
τk (122)

and define

T (n; z1, . . . , zr) := |{y ∈ Z
n
2 : ival(y) = z}|. (123)

We show by induction on r that T (n; z1, . . . , zr) is a polynomial of degree at most r. The base
case requires us to place an interval of length z1 in n slots, and clearly T (n; z1) = n − z1 + 1, a
polynomial of degree 1.

For the induction step, suppose the claim is true for any r − 1 intervals (z1, . . . , zr−1, 0, . . . , 0).
Using the hypothesis for the case of r − 1 intervals, we find

T (n; z1, . . . , zr) =

n−zr
∑

j=1

T (n− zr − j; z1, . . . , zr−1) (124)

=

n−zr
∑

j=1

cr−1(z1, . . . , zr−1) (n− zr − j)r−1

+ · · ·+ c0(z1, . . . , zr−1) (n− zr − j)0, (125)
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where in the second equality we use the hypothesis to conclude that

T (n; z1, . . . , zr−1) = cr−1(z1, . . . , zr−1)n
r−1 + · · ·+ c0(z1, . . . , zr−1)n

0 (126)

is a polynomial of degree at most r− 1. It follows from Faulhaber’s formula that T (n; z1, . . . , zr) is
a polynomial of degree at most r, which completes the inductive step.

To complete the proof of the main result, we observe that

∣

∣f−1(1)
∣

∣ =
∑

z∈Zτ
τk

∑

y∈Zn
2

ival(y)=z

Czy(n) (127)

=
∑

z∈Zτ
τk

pz(n)Cz, (128)

where, for each z ∈ Z
τ
τk, pz(n) is a polynomial in n (by claim (ii)). Here we denote Cz := Czy(n)

since it is independent of n and y, because we assume the counting problem is oblivious.

The above theorem relies crucially on the assumption that the terms in the Hamiltonian are
arranged on a line. We now describe a variant of the theorem that handles Hamiltonians with
periodic boundary conditions. To this end, consider n qubits arranged on a ring, and again suppose
we are given Hermitian operators G1, . . . , Gν with values d1, . . . , dν ∈ {−1, 1} indicating shift
directions. We assume that each term Gi acts as the identity except on the first k qubits if di = 1,
or on the first k− 1 qubits and the last qubit if di = −1. This determines an ordered list of length
µ := νn including all translations of the given terms, of the form

(

G1, R
d1G1R

−d1 , . . . , Rd1(n−1)G1R
−d1(n−1),

G2, R
d2G2R

−d2 , . . . , Rd2(n−1)G2R
−d2(n−1),

...

Gν , R
dνGνR

−dν , . . . , Rdν(n−1)GνR
−dν(n−1)

)

, (129)

where R is the operator that shifts the qubits right by one position. For each i ∈ JµK := {1, . . . , µ},
let Hi denote the ith term in this list.

We define the support similarly as before, except that we take into account the periodic
boundary conditions. In particular, the support of RjGiR

−j with di = 1 has a 1 at positions
(j mod n)+1, ((j+1) mod n)+1, . . . , ((j+k−1) mod n)+1. Likewise, the support of R−jGiR

j with
di = −1 has a 1 at positions ((n−j−1) mod n)+1, ((n−j) mod n)+1, . . . , ((n−j+k−2) mod n)+1.
Again we extend the definition of support to a τ -tuple of terms by taking the entrywise OR of all
elements of the tuple. The notion of an interval pattern remains unchanged.

Our analysis divides the problem into a part where the boundary is irrelevant (so that we can
apply the previous analysis) and a part where the boundary plays a role (which only involves a
constant number of terms). To do this, we divide a support into three parts: the prefix, the suffix,
and the infix.

Let y ∈ Z
n
2 be the support of a tuple of operators. If y1 = 0, we define prefix(y) ∈ Z

n
2 to be

the zero vector. Otherwise, prefix(y) is the indicator function of the first interval in y (i.e., it is a
0/1 vector that is 1 only on the first interval in y). Likewise, if yn = 0, we define suffix(y) ∈ Z

n
2

to be the zero vector. Otherwise, suffix(y) is the indicator function of the last interval in y. Then
infix(y) ∈ Z

n
2 is the vector obtained by removing the first and the last interval from y, i.e.,

infix(y) := y ⊕ prefix(y)⊕ suffix(y). (130)
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Let z ∈ Z
τ
τk be an interval pattern. We define the boundary as a mapping bndry : Zτ

τk → Z
n
2 . If

there exists a y ∈ Z
n
2 with y1 = yn = 1 such that ival(y) = z, then bndry(z) = prefix(y) ⊕ suffix(y).

Otherwise, we set bndry(z) to be the zero vector. The mapping bndry is a well-defined function
of the interval pattern z since it does not depend on the specific choice of support y (provided
y1 = yn = 1, which is the only case in which we will use this function).

We now consider the counting problem. As before, we let f : Sµ
τ → Z2 be a binary-valued

function that represents whether a tuple of operators has some specified property, and our goal is
to compute |f−1(1)| as in (117). For a Hamiltonian on a ring with periodic boundary conditions, we
say that the counting problem is oblivious if for any fixed z ∈ Z

τ
τk, the following two requirements

are satisfied:

(O1) the quantity
∣

∣

{

{i1, . . . , iτ} : f
(

{i1, . . . , iτ}
)

= 1, supp
(

{i1, . . . , iτ}
)

= y, ival(y) = z
}∣

∣ (131)

is identical for all n and all y ∈ Z
n
2 with ival(y) = z and y1yn = 0; and

(O2) fixing ω ∈ JτK and {j1, . . . , jω} ∈ Sµ
ω with supp({j1, . . . , jω}) = bndry(z), the quantity

∣

∣

{

{k1, . . . , kτ−ω} : fj1,...,jω
(

{k1, . . . , kτ−ω}
)

= 1, supp
(

{k1, . . . , kτ−ω}
)

= infix(y), ival(y) = z
}∣

∣

(132)
is identical for all n and all y ∈ Z

n
2 with ival(y) = z and y1 = yn = 1. Here fj1,...,jω is a

restricted version of f defined by

fj1,...,jω
(

{k1, . . . , kτ−ω}
)

= f
(

{j1, . . . , jω , k1, . . . , kτ−ω}
)

. (133)

Note that the set of indices {j1, . . . , jω} is disjoint from {k1, . . . , kτ−ω} as bndry(z) and infix(y) do
not overlap. Therefore, the function fj1,...,jω is well-defined. Note also that in the first case, no
operator can wrap around the boundary since y1 = 0 or yn = 0. We can thus impose obliviousness
on n−1 qubits, where the Hamiltonian is arranged on a line. In the second case, we have y1 = yn = 1
so that an operator could wrap around the boundary. However, the above definition of obliviousness
allows us to enumerate all possible ways to put tuples on the boundary. The usual requirement of
obliviousness can then be imposed on the remaining qubits that are not on the boundary.

We now show that oblivious counting also results in a polynomial in n in the periodic case.
Throughout the remainder of this subsection, we use the notations

Czy(n, f) :=
∣

∣

{

{i1, . . . , iτ} : f
(

{i1, . . . , iτ}
)

= 1, supp
(

{i1, . . . , iτ}
)

= y, ival(y) = z
}∣

∣ (134)

Czy(n, fj1,...,jω) :=
∣

∣

{

{k1, . . . , kτ−ω} : fj1,...,jω
(

{k1, . . . , kτ−ω}
)

= 1,

supp
(

{k1, . . . , kτ−ω}
)

= infix(y), ival(y) = z
}∣

∣.

(135)

Theorem F.9. Let G1, . . . , Gν be Hermitian operators and let d1, . . . , dν ∈ {−1, 1}. We assume
that each term Gi acts as identity except on the first k qubits if di = 1, or on the first k − 1 qubits
and the last qubit if di = −1. Suppose that f : Sµ

τ → Z2 induces an oblivious counting problem, as
defined above. Then |f−1(1)| is a polynomial in n.

Proof. We compute |f−1(1)| by expanding it over all interval patterns and supports as

|f−1(1)| =
∑

z∈Zτ
τk

∑

y∈Zn
2

Czy(n, f) (136)

=
∑

z∈Zτ
τk

∑

y∈Zn
2

y1yn=0

Czy(n, f) +
∑

z∈Zτ
τk

∑

y∈Zn
2

y1=yn=1

Czy(n, f). (137)
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For the first term, no operator crosses the boundary. We can thus reduce the problem to counting
τ -tuples on n − 1 qubits with interval pattern z and support given by either the first or last
n− 1 positions of y. The Hamiltonian can effectively be regarded as arranged on a line. Invoking
Theorem F.8, we see that the first term is a polynomial in n.

To handle the second term, we use a basic counting argument: to count the number of τ -tuples,
we add up all the possible cases where ω of them are on the boundary bndry(z) and the other τ −ω
have support infix(y) away from the boundary. This allows us to rewrite

∑

z∈Zτ
τk

∑

y∈Zn
2

y1=yn=1

Czy(n, f) =
∑

z∈Zτ
τk

∑

ω∈JτK

∑

{j1,...,jω}∈S
µ
ω

supp({j1,...,jω})=bndry(z)

∑

y∈Zn
2

y1=yn=1

Czy(n, fj1,...,jω). (138)

By (O2) and a similar argument as above, the result is a sum of constant number of polynomials
in n, which completes the proof.

Now we apply Theorem F.9 to compute commutator bounds for our model Hamiltonian (1).
To construct a product formula, we order the terms of the Hamiltonian similarly to the example in
(114); in particular, we take them in the order

σx1σ
x
2 , . . . , σ

x
n−1σ

x
n, σ

x
nσ

x
1 , σ

y
1σ

y
2 , . . . , σ

y
n−1σ

y
n, σ

y
nσ

y
1 , σ

z
1σ

z
2 , . . . , σ

z
n−1σ

z
n, σ

z
nσ

z
1 , σ

z
1 , . . . , σ

z
n. (139)

Our approach can be applied to product formulas of any order. However, we focus on the
second- and fourth-order cases, for which the list of of operators in the product formulas have
lengths µ = 8n and µ = 40n, respectively. The resulting lists of terms take the form specified
in Theorem F.9. Since each term in the Hamiltonian acts on at most two neighboring qubits, we
can take the support of each operator to be a 0/1 vector of Hamming weight 2, with a 1 in two
consecutive positions.

To apply the commutator bounds, we must count τ -tuples of Hamiltonian operators satisfying
a certain commutation pattern, where τ ∈ {2, 3} for the second-order bound and τ ∈ {2, 3, 4, 5} for
the fourth-order case. It remains to check that this counting problem is oblivious.

We first verify condition (O1). Fix an interval pattern z ∈ Z
τ
τk and consider supports y ∈ Z

n
2

and y′ ∈ Z
n′

2 with ival(y) = ival(y′) = z and y1yn = y′1y
′
n′ = 0. By the latter conditions, we

know that the relevant operators Hi1 , . . . ,Hiτ do not touch the boundary. Intuitively, since the
Hamiltonian includes all possible shifts of any given term, the counting problems for y and y′ should
be equivalent.

To make this rigorous, we set up a one-to-one correspondence between τ -tuples with support y
and those with support y′. First consider the special case in which there is only one interval with the
same length for both y and y′. Let Hj1 , . . . ,Hjω be operators with support supp({j1, . . . , jω}) = y.
We construct a corresponding ω-tuple with support y′ as follows. Let δ be the position difference
between the first non-zero element of y′ and that of y. For any term in the Hamiltonian of the
form RdilGiR

−dil, the corresponding operator is Rdil+δGiR
−dil−δ. More generally, we can apply

the same transformation to all intervals in y and y′ with lengths z1, . . . , zτ for any ω ∈ JτK and
{j1, . . . , jω} ∈ Sµ

ω . The resulting correspondence is easily checked to be invertible, so it specifies a
bijection between ω-tuples as claimed. We have thus established condition (O1). Condition (O2)
follows similarly as bndry(z) and infix(y) do not overlap.

Using symbolic polynomial interpolation, we derive the following succinct commutator bounds
for the second- and fourth-order formulas.

Theorem F.10 (Second-order commutator bound, succinct form). Let H be the Hamiltonian (1),
with terms ordered as in (139). Then the error in the second-order product formula approximation
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satisfies

‖exp(−iHt)− [S2(−it/r)]r‖ ≤ Λ3|t|3
r2

T2(n) +
4(4nΛt)4

3r3
exp

(

8nΛ|t|
r

)

, (140)

where

T2(n) :=

{

194, n = 3

40n2 − 58n, n ≥ 4.
(141)

Theorem F.11 (Fourth-order commutator bound, succinct form). Let H be the Hamiltonian (1),
with terms ordered as in (139), and let p := 1/(4−41/3). Then the error in the fourth-order product
formula approximation satisfies

‖exp(−iHt)− [S4(−it/r)]r‖

≤
(

4p− 1

2
Λ|t|

)5 1

5! · r4T4(n) + 2
(20(4p − 1)nΛt)6

6! · r5 exp

(

20(4p − 1)nΛ|t|
r

)

, (142)

where

T4(n) :=























23073564672, n = 3

94192316416, n = 4

278878851840, n = 5

1280000000n4 − 7701760000n3 + 23685120000n2 − 30224677632n, n ≥ 6.

(143)

We conclude this appendix by considering the asymptotic gate complexity of the PF algorithm
using our commutator bounds. Take the fourth-order bound as an example. With Λ = Θ(1) and
t = Θ(n), the commutator bound is

‖exp(−iHt)− [S4(−it/r)]r‖ ≤ O

(

n9

r4
+
n12

r5

)

. (144)

To guarantee that the simulation error ǫ is at most some constant, it suffices to use r = O(n2.4)
segments. Since the circuit for each segment has size O(n), we have an overall gate complexity of
O(n3.4). Along similar lines, we find gate complexities of O(n4) (resp., O(n11/3)) for the first-order
(resp., second-order) commutator bound. These bounds improve the asymptotic gate complexities
of the PF algorithm established by the analytic and minimized bounds (as shown in Table 1), which
give O(n5) for the first-order formula, O(n4) for second order, and O(n3.5) for fourth order.

We only present concrete commutator bounds for the first-, second-, and fourth-order product
formulas. In general, to obtain the 2kth-order commutator bound, one must count the number of
(2k + 1)-tuples satisfying a certain commutation pattern in a list of operators of length 8 · 5k−1n.
For k ≥ 3, computing the exact form of the (2k)th order bound seems challenging even with the
help of Theorem F.9 and polynomial interpolation.

Nevertheless, it is still possible to obtain the asymptotic n-dependence of the commutator bound.
The key step is to study those (2k + 1)-tuples for which all pairs of operators commute with each
other. The number Ncomm of such commuting (2k + 1)-tuples satifsfies

(8 · 5k−1)2k+1

(

n− 2k

2k + 1

)

≤ Ncomm ≤
(

8 · 5k−1n

2k + 1

)

. (145)

(Here the lower bound follows by placing each (2k + 1)-tuple so that its support contains exactly
2k + 1 intervals.) Invoking Theorem F.9, we see that Ncomm is a polynomial in n whose leading
term is (8 · 5k−1n)2k+1.
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When we Taylor expand the evolutions exp(λH) and S2k(λ), those (2k+1)-tuples for which all
pairs of operators commute with each other cancel. The remaining terms are either (2k+1)-tuples
where at least one pair of operators do not commute, or l-tuples with l ≤ 2k. Our above discussion
shows that there are O(n2k) such tuples. Therefore, the 2kth-order commutator bound takes the
form

‖exp(−iHt)− [S2k(−it/r)]r‖ ≤ O

( |t|2k+1n2k

r2k
+

(nt)2k+2

r2k+1

)

= O

(

n4k+1

r2k
+
n4k+4

r2k+1

)

. (146)

To ensure that the simulation error is O(1) for t = n, it suffices to choose r = O(n2+2/(2k+1)),
which leads to a total gate complexity of O(n3+2/(2k+1)). This improves over the performance of
the analytic and minimized bounds, which give complexity O(n3+1/k).

F.3 Empirical bounds

While the bounds discussed in Section F.1 and Section F.2 provide rigorous correctness guaran-
tees, they can be very loose. To understand the minimum resources that suffice for product for-
mula simulation, we estimate their empirical performance. Of course, since quantum simulation
is computationally challenging, we can only directly compute the actual simulation error for small
instances. Using binary search, we find the value of r (the total number of segments) that just
suffices to ensure error 10−3. We extrapolate this behavior to produce a non-rigorous estimate of
the performance of product formula simulation for instances of arbitrary size. We emphasize that
the resulting empirical bound does not come with a guarantee of correctness. Nevertheless, we
believe it better captures the true performance of product formula simulations and indicates the
extent to which our rigorous bounds are loose.

We numerically simulate the product formula algorithm for systems of size 5 to 12, determining
the value of r required to ensure error 10−3 as described above, and averaging over five random
choices of the local field strengths hj . We fit these data to power laws, as depicted in Figure 4. We
find

r1 = 2417n1.964, r2 = 39.47n1.883, r4 = 4.035n1.555, r6 = 1.789n1.311, r8 = 1.144n1.141, (147)

where ri is the number of segments for the ith-order formula to produce a simulation that is accurate
to within 10−3. Considering the size of the circuit for each segment, this suggests an asymptotic
complexity of roughly 9668n2.964 for the first-order formula, 315.8n2.883 for second order, 161.4n2.555

for fourth order, 357.8n2.311 for sixth order, and 1144n2.141 for eighth order.

G Taylor series implementation details

In this appendix, we discuss some technical details related to the implementation of the Taylor series
(TS) algorithm, as introduced in Section C.2. We present concrete error bounds in Section G.1 and
discuss the failure probability of the approach in Section G.2. Then we describe how to implement
select(V ) gates, a major component of the algorithm: in Section G.3, we explain how the control
registers for these gates are encoded, and in Section G.4, we give an optimized implementation of
select(V ) gates.

G.1 Error analysis

In this section, we derive an explicit error bound that quantifies how the truncation order K affects
the overall accuracy. We then discuss how to apply this bound.
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Figure 4: Comparison of the values of r using the commutator and empirical bounds for formulas of order 1,
2, and 4, and values of r for the empirical bound for formulas of order 6 and 8. Straight lines show power-law
fits to the data. The error bars for product formulas of order greater than 1 are negligibly small, so we omit
them from the plots.
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We begin by bounding the error introduced by truncating the Taylor series.

Lemma G.1. With the definitions of Ũ(t) in (7) and tseg in (18), we have

‖Ũ (t)− exp(−iHt)‖ ≤ 2
(ln 2)K+1

(K + 1)!
(148)

for any t ≤ tseg.

Proof. We have

‖Ũ(t)− exp(−iHt)‖ =

∥

∥

∥

∥

∥

∞
∑

k=K+1

(−iHt)k
k!

∥

∥

∥

∥

∥

(149)

≤
∞
∑

k=K+1

(‖H‖t)k
k!

(150)

≤
∞
∑

k=K+1

((α1 + · · · + αL)t)
k

k!
(151)

≤
∞
∑

k=K+1

(ln 2)k

k!
(152)

≤ 2
(ln 2)K+1

(K + 1)!
, (153)

where the final inequality follows from Lemma F.2.

Next we consider the error induced by the isometry V(t) defined in (16). It is straightforward
to verify that

(〈0| ⊗ I)V(t) = 3

s
Ũ(t)− 4

s3
Ũ(t)Ũ(t)†Ũ(t). (154)

As discussed in Section C.2, we rotate an ancilla qubit to increase the value of s to be precisely
s = 2. Then the following bound characterizes the error in the implementation of the Taylor series.

Lemma G.2. Suppose ‖Ũ − U‖ ≤ δ for some unitary operator U . Then
∥

∥

∥

∥

3

2
Ũ − 1

2
Ũ Ũ †Ũ − U

∥

∥

∥

∥

≤ δ2 + 3δ + 4

2
δ. (155)

Proof. Since ‖Ũ − U‖ ≤ δ, we have

‖Ũ‖ ≤ ‖Ũ − U‖+ ‖U‖ ≤ 1 + δ (156)

and therefore

‖Ũ Ũ † − I‖ ≤ ‖(Ũ − U)Ũ †‖+ ‖U(Ũ † − U †)‖ ≤ δ(2 + δ). (157)

Thus, by the triangle inequality, we have
∥

∥

∥

∥

3

2
Ũ − 1

2
Ũ Ũ †Ũ − U

∥

∥

∥

∥

≤ ‖Ũ − U‖+ 1

2
‖Ũ − Ũ Ũ †Ũ‖ (158)

≤ δ +
δ(2 + δ)(1 + δ)

2
(159)

=
δ2 + 3δ + 4

2
δ (160)

as claimed.
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We use the following basic property of contractions (operators of norm at most 1), which is
easily proved using the triangle inequality.

Lemma G.3. Suppose Ui : H → H and Vi : H → H are contractions for all i ∈ {1, . . . , r}. If
‖Ui − Vi‖ ≤ η for all i, then

‖Ur · · ·U2U1 − Vr · · ·V2V1‖ ≤ rη. (161)

We also use the following lemma, which bounds the error introduced by normalization.

Lemma G.4. Suppose ‖|φ〉‖ = 1, ‖|ψ〉‖ ≤ 1, and ‖|ψ〉 − |φ〉‖ ≤ ξ < 1. Then

∥

∥

∥

∥

|ψ〉
‖|ψ〉‖ − |φ〉

∥

∥

∥

∥

≤
√

1 + ξ −
√

1− ξ. (162)

Proof. Decompose |ψ〉 as
|ψ〉 = α|φ〉+ β|φ⊥〉 (163)

for some normalized state |φ⊥〉 orthogonal to |φ〉. Clearly |α|2 + |β|2 ≤ 1 since ‖|ψ〉‖ ≤ 1. Further-
more, the assumption ‖|ψ〉 − |φ〉‖ ≤ ξ implies

|α− 1|2 + |β|2 ≤ ξ2, (164)

so
|α|2 + |β|2 ≤ ξ2 + 2Re(α)− 1 (165)

with 1− ξ ≤ Re(α) ≤ 1 + ξ.
Then we have

∥

∥

∥

∥

|ψ〉
‖|ψ〉‖ − |φ〉

∥

∥

∥

∥

=

√

2− 2Re(α)
√

|α|2 + |β|2
(166)

≤
√

2− 2Re(α)
√

ξ2 + 2Re(α)− 1
(167)

≤
√

2− 2(1− ξ2)
√

ξ2 + 2(1 − ξ2)− 1
(168)

=
√

1 + ξ −
√

1− ξ. (169)

Here the first inequality uses (165) and the fact that Re(α) ≥ 1− ξ ≥ 0, and the second inequality
follows since the function x/

√

2x− 1 + ξ2 achieves its minimum at x = 1 − ξ2 within the interval
1− ξ ≤ x ≤ 1 + ξ.

With all the above lemmas in hand, we are ready to prove an explicit error bound for the TS
algorithm.

Theorem G.5. The TS algorithm achieves error at most
√
1 + ξ−√

1− ξ with success probability
at least (1− ξ)2, where

ξ = r
δ2 + 3δ + 4

2
δ with δ = 2

(ln 2)K+1

(K + 1)!
. (170)
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K ξ/r

1 1.3626

2 0.24118

3 0.039031

4 0.0053441

5 0.00061628

6 6.10123 × 10−5

7 5.28621 × 10−6

8 4.07124 × 10−7

9 2.821965 × 10−8

10 1.778215 × 10−9

Table 2: Lookup table for the truncation order K, with s boosted to be 2 in each segment.

Proof. For t ∈ {tseg, trem}, Lemma G.1 shows that

‖Ũ(t)− exp(−iHt)‖ ≤ δ, (171)

and Lemma G.2 shows that

‖(〈0| ⊗ I)V(t) − exp(−iHt)‖ ≤ ξ/r. (172)

Since V(t) is an isometry, (〈0| ⊗ I)V(t) is a contraction, so by Lemma G.3, we have

‖(〈0| ⊗ I)V(trem)
(

(〈0| ⊗ I)V(tseg)
)r−1 − exp(−itH)‖ ≤ ξ. (173)

The claim about the success probability follows by applying the triangle inequality, and the accuracy
can be established by invoking Lemma G.4.

To apply this bound, we must determine the truncation order K that achieves the desired
error bound ǫ. Just as for the product formula error bounds presented in Appendix F, it does not
seem possible to compute K in closed form. However, since K can only take integer values, it is
straightforward to tabulate the error estimates corresponding to all potentially relevant values of
K, as shown in Table 2. Using the known value of r, we can then determine which value of K
suffices to ensure small error.

In Section F.3, we presented empirical error bounds for simulations based on product formulas.
It would be natural to perform a similar analysis of the error in the TS algorithm. Unfortunately, it
is intractable to find an empirical bound by direct simulation since the number of ancilla qubits used
by the TS algorithm puts it beyond the reach of classical simulation even for very small systems
(see Figure 2). A more limited alternative would be to use empirical data to improve the estimated
error of the truncated Taylor series. However, since

(ln 2)K+1

(K + 1)!
≤

∞
∑

k=K+1

(ln 2)k

k!
≤ 2

(ln 2)K+1

(K + 1)!
, (174)

the estimated error can be improved by a factor of at most 2, which results in an additive offset of
at most ln 2 for the truncation order K. Thus we do not consider such a bound in our analysis.
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G.2 Failure probability

Note that unlike the PF approach, the TS algorithm does not always succeed. When a measurement
of the ancilla register indicates a failure, we must restart the simulation. To make a fair comparison
between the PF and TS algorithms, we should take the success probability into account.

Fortunately, it turns out that the resulting overhead is almost negligible. With ǫ = 10−3,
Theorem G.5 gives

ξ ≤
√

ǫ2 − ǫ4

4
< 0.001, (175)

so the success probability of the algorithm is at least

(1− ξ)2 ≥ 0.998. (176)

The expected number of times we must repeat the algorithm before succeeding is approximately
1/0.998 ≈ 1.002. Since this factor is very close to 1, we simply neglect it, and we find it reasonable
to directly compare gate counts for the PF algorithm (which has no probability of failure) and the
TS approach.

G.3 Encoding of the control register

A crucial step in the implementation of the TS algorithm (and in the QSP algorithm) is to synthesize
the select(V ) gates. The cost of this implementation depends strongly on the chosen representation
for the control register.

Recall from (14) that the select(V ) operation has the form

select(V ) :=
Γ−1
∑

j=0

|j〉〈j| ⊗ Vj. (177)

For the TS algorithm, the operators Vj are defined via (10). Here the index j labels a value
k ∈ {0, 1, . . . ,K} and indices ℓ1, . . . , ℓk ∈ {1, . . . , L}. Perhaps the most straightforward approach
is to represent the entire control register with a binary encoding using log2(K +1) +K log2 L bits.
However, as pointed out in [14], we can significantly reduce the gate complexity by choosing a
different encoding of the control register.

Specifically, we use a unary encoding to label k and a binary encoding for each ℓ1, . . . , ℓk. With
such an encoding, the instance of select(V ) in the TS algorithm can be represented as the map

|1k0K−k〉|ℓ1, . . . , ℓK〉|ψ〉 7→ |1k0K−k〉|ℓ1, . . . , ℓK〉(−i)kHℓ1 · · ·Hℓk |ψ〉. (178)

We implement this transformation as follows. Conditioned on the jth qubit of the unary encoding
of k being 1, and the jth coordinate of ℓ1, . . . , ℓK being the binary encoding of ℓj, we apply
(−i)Hℓj . Compared to an entirely binary encoding, this approach only requires an additional
⌈K+1− log2(K+1)⌉ qubits, which is a modest increase since K is typically small (see Table 2). In
return, instead of selecting on a large register of Θ(K logL) bits, we can perform K+1 independent
selections on registers of log2 L bits, each controlled by a single qubit.

G.4 Implementation of select(V )

In this section, we present a circuit for the select(V ) operation
∑Γ

γ=1|γ〉〈γ| ⊗ Vγ . We assume that
the control register γ ∈ {1, . . . ,Γ} is stored in binary using w := ⌈log2 Γ⌉ bits. As discussed in
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Section G.3, this procedure is a basic subroutine in our implementation of the select(V ) operation
appearing in the TS algorithm, using a mixed unary/binary encoding. We also use this select(V )
construction in our implementation of the QSP algorithm.

Our goal is to apply a unitary operation Vγ conditioned on the control register being in the state
|γ〉. To do this, we cycle the value of a designated ancilla qubit through Γ Boolean products of w
literals, where in each of the products, each of the variables x1, . . . , xw appears exactly once (either
negated or not). We apply Vγ conditioned on the ancilla qubit at the γth step of this construction.
To simplify the presentation, we describe how to cycle through all 2w Boolean products. This
procedure can be terminated after producing only Γ Boolean products to avoid unnecessary cost.

A straightforward way of obtaining the Boolean products is to implement them via multiply-
controlled Toffoli gates with appropriate control negations. Implementations of the multiply-
controlled Toffoli gates have been well-studied. In particular, using the approach of [55], and
assuming that the negative controls introduce no additional cost,3 we can cycle through all Boolean
products using the following resources:

4w2w − 6 · 2w Hadamard gates
8w2w − 9 · 2w T/T † gates
6w2w − 6 · 2w cnot gates

⌈w−2
2 ⌉ ancilla qubits, initialized in and returned to the state |0〉.

We now present an optimized circuit to cycle through these Boolean products. In particular,
we do this using a reversible circuit consisting of not, cnot, and Toffoli gates (we call a circuit
over this gate set an NCT circuit). Of the three basic gates used by the NCT circuits, the Toffoli
gate is the most expensive—its best known implementation uses 6 cnot gates, 2 Hadamard gates,
and 7 T/T † gates [2]—so we first focus on optimizing the Toffoli gate count. We use Toffoli gates
with controls of arbitrary polarities. All such Toffoli gates can be implemented by a Clifford+T
circuit using the same resources [2].

To cycle though 2w Boolean products, clearly we must use at least 2w gates (note that we do not
allow gates with multiple targets). Indeed, most of these must be Toffoli gates, the most expensive
gates in an NCT circuit.

Lemma G.6 ([56, Lemma 4]). An NCT circuit for select(V ) control generation requires at least
2w − w − 1 Toffoli gates.

Considering the cost of a single Toffoli gate, a Clifford+T circuit with 2w Toffoli gates could
contain as many as 6 · 2w cnot gates and 7 · 2w T/T † gates. We next construct a quantum
circuit that cycles through all 2w Boolean products, and show that after several optimizations, the
gate counts are close to the above optimistic figure, and significantly better than those obtained
using multiply-controlled Toffoli gates. We begin by describing an efficient NCT circuit that cycles
through 2w Boolean products.

Lemma G.7. The select(V ) control generation can be implemented by an NCT circuit using at
most 2 not gates, 1.5 · 2w − 2 cnot gates, and 1.5 · 2w − 4 Toffoli gates, with w − 1 ancilla qubits
initialized in and returned to the state |0〉.

Proof. Consider a depth-w complete binary tree, where vertices are labeled by the Boolean products
of the w variables x1, . . . , xw. A vertex at depth d is labeled by a product of the first d variables,

3While a construction with this property was not explicitly developed in [55], it appears that any multiply-
controlled Toffoli gate with arbitrary positive and negative controls can be implemented with the same number of
gates as the multiply-controlled Toffoli gate of the same size with only positive controls.
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Figure 5: Binary tree encoding the circuit that implements the control generation for the select(V ) operation.

xa11 . . . xadd , where xaii := xi if ai = left and xaii := xi if ai = right. The label ad indicates how we
arrive at xa11 . . . xadd from its parent xa11 . . . x

ad−1

d−1 , by taking the left edge if ad = left or the right
edge if ad = right. The product xa11 . . . xadd thus indicates the path to the vertex from the root,
as shown in Figure 5. Leaves of the tree are labeled by the Boolean products over all w variables
x1, . . . , xw, in all possible polarities.

In the quantum circuit implementing the control generation for the select(V ) transformation,
all vertices at a given depth are represented by a single qubit, labeled qd for d ∈ {0, 1, . . . , w}.
The qubit qk carries the product of the first k variables with appropriate polarities that evolve as
the computation proceeds. We discuss how to implement the circuit using w + 1 ancilla qubits
q0, q1, . . . , qw, although it is straightforward to reduce the number of ancillas to w− 1. The root of
the tree corresponds to the Boolean constant 1, so it can be viewed as a virtual qubit. The two
depth-1 vertices represent the variable x1 and its negation, values that can be obtained in-place by
negating the variable x1 as needed. Thus it suffices to use w − 1 ancilla qubits q2, q3, . . . , qw.

We compute all desired Boolean products by traversing the tree using the left-hand rule, i.e.,
always taking the leftmost edge going down if there are vertices not yet explored, and going up if
all edges and vertices below were already explored. The path starts and ends in the root (marked
with an asterisk in Figure 5), and traverses each edge twice, once going down and once coming up,
so it has length 4 · 2w − 4.

When traversing the edge (xa11 x
a2
2 . . . x

ad−1

d−1 , x
a1
1 x

a2
2 . . . x

ad−1

d−1 x
ad
d ) in either direction, we apply

the gate tof(qd−1, x
ad
d ; qd), where tof(c1, c2; t) denotes a Toffoli gate with controls c1 and c2 and

target t. These edges in the walk are colored blue in Figure 5. No gate needs be applied for edges
connecting to the root, as the variable x1 and its negation can be obtained without using a Toffoli
or a cnot gate. Those edges in the walk are colored grey in Figure 5. Overall, this circuit uses
4 · 2w − 8 Toffoli gates and two not gates (one to negate x1 and the other to uncompute this
negation). During the walk, each time we reach a leaf, we create a new Boolean product of w
variables with polarities determined by the path to the root. By visiting all leaves, we create all
2w desired products. Completing the path and returning to the root ensures that all ancilla qubits
are reset to 0. Note that we can return to the root from any given leaf without visiting all leaves,
finishing the walk early if only some of the Boolean products are needed (and thereby using fewer
gates).
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Figure 6: Optimized circuit walk on the binary tree, using grey, blue, red, and green solid edges. Dashed
edges indicate reductions in the quantum gate count.

Next we show how to reduce the Toffoli gate count. Observe that the above path makes 2w − 2
moves of the form v1 → v2 → v3, where v1 and v3 are the children of v2, which is not the root (for
example, consider any path indicated by a red arc in Figure 6). Such a path requires applying the
gates tof(qd−1, x

left

d ; qd) and tof(qd−1, x
right

d ; qd). However, by the circuit identity

tof(qd−1, x
left

d ; qd)tof(qd−1, x
right

d ; qd) = cnot(qd−1; qd), (179)

we can replace two Toffoli gates with one cnot gate. Since v2 is never a leaf, we do not need to
explicitly visit it, thereby saving resources. This modification reduces the Toffoli gate count by
2(2w − 2) = 2 · 2w − 4, giving a reduced Toffoli gate count of 2 · 2w − 4. However, there are now
2w − 2 cnots. The circuit still uses 2 not gates.

Next, consider a path v1 → v2 → v3 → v4 → v5, where v2 and v4 are the children of v3, v1 is the
right child of v2, and v5 is the left child of v4. Such paths are indicated by green arcs in Figure 6.
Taking such a path involves applying the circuit

tof(qd−1, xd; qd)cnot(qd−2; qd−1)tof(qd−1, xd; qd). (180)

This gate sequence can be simplified to

cnot(qd−1; qd)tof(qd−2, xd; qd)cnot(qd−2; qd−1). (181)

This additional optimization eliminates 1
2 · 2w − 1 Toffoli gates and introduces 1

2 · 2w − 1 cnots,
giving a reduced Toffoli gate count of 2 · 2w − 4− 1

2 · 2w + 1 = 1.5 · 2w − 3.
We conclude by carefully counting the resources, while reducing them a little further. Naively,

every move along an edge of the tree involves applying a Toffoli gate. As detailed above, each
red shortcut lets us traverse two edges using only one cnot gate and each green shortcut lets us
traverse four edges using one Toffoli and two cnots. Overall, the number of Toffoli gates, per the

46



colored tree in Figure 6, is

4 · 2w − 4 (length of the entire unreduced path)

− 2w (red shortcuts reduction)

− 1.5 · 2w + 3 (green shortcuts reduction)

− 2 (grey edges connect to a virtual node and require no Toffoli gates)

− 1 (we can compute x̄1x2 from x1x̄2 using two cnots and no Toffoli gates)

= 1.5 · 2w − 4. (182)

The cnot gate count is

0.5 · 2w (red)

+ 2 · (2w−1 − 1) (green)

+ 0 (across blue and grey paths)

= 1.5 · 2w − 2. (183)

The not gate count is 2.

By substituting Toffoli gates with their Clifford+T implementations, the desired control gener-
ation circuit may be implemented using 2 not gates, 3 · 2w − 8 Hadamard gates, 10.5 · 2w − 28 T
gates, and 10.5 · 2w − 26 cnot gates. In the remainder of this section, we reduce this gate count.
To accomplish this, we pair Toffoli gates as indicated in Figure 6 with dashed blue lines. Formally,
we pair every tof(qd−1, xd; qd) with the tof(qd−1, xd; qd), such that the tree walk path between
these two edges does not visit any leaf, and the gates applied between these two Toffoli gates do
not affect qubits xd and qd. The path beginning and ending with such a pair of Toffoli gates results
in the following circuit, where the unitary R implements all gates in between:

|...〉 /
R

|qd−1〉 • •
|xd〉 •
|qd〉

The two Toffoli gates can be decomposed into Clifford+T gates such that the tof(qd−1, xd; qd)
gate ends with one Hadamard, two cnots, and 3 T/T † gates on qubits xd and qd. These cancel
with one Hadamard, two cnots, and 3 T/T † gates in a decomposition of tof(qd−1, xd; qd), leaving
behind a single Phase gate (due to the Toffoli gate controls appearing with different polarities).
We furthermore choose the minimal resource implementation of tof(qd−1, xd; qd) such that the
last gate applying to qubit |qd−1〉 is cnot(qd; qd−1) and the first gate in the decomposition of
tof(qd−1, xd; qd) affecting qubit |qd−1〉 is also cnot(qd; qd−1). These two cnots can be commuted
to each other and canceled, since Phase commutes with the control on the qubit |qd〉 and R is a
reversible circuit with its output xored onto the target qubit |qd−1〉, implying that R commutes
with cnot(qd; qd−1). The reduced circuit, equivalent to the one shown above, is as follows:

|...〉 /
R

|qd−1〉 T T T † T † T † T T † T

|xd〉 • • • •
|qd〉 H • P • H
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The equivalence of the circuits before and after optimization can be verified by direct computation.
The control generation circuit contains 1

2 · 2w − w such Toffoli pairs, each reducing the gate
count by 2 Hadamards, 6 T/T † gates, and 6 cnots while introducing a single Phase gate. Overall,
the optimized select(V ) control generation circuit thus uses the following resources:

2 not gates
2 · 2w + 2w − 8 Hadamard gates

0.5 · 2w − w Phase gates
7.5 · 2w + 6w − 28 T/T † gates
7.5 · 2w + 6w − 26 cnot gates

w − 1 ancilla qubits, initialized in and returned to the state |0〉.
Note that the resulting T/T †-count is only about 7% higher than the expected T/T †-count in

a circuit with 2w −w− 1 Toffoli gates (which is the number of Toffoli gates required to generate 2w

Boolean products by a reversible NCT circuit, according to Lemma G.6). The overall elementary
gate count in our optimized implementation is 17.5 · 2w + o(2w). This compares favorably to the
baseline estimation of 18w2w + o(w2w) elementary gates, improving the gate count by a factor of
36w
35 at leading order. Recall that in our application to the TS algorithm, we have w = ⌈log2 Γ⌉,
where Γ is the number of selected unitaries, as in (177).

H Quantum signal processing implementation details

We now turn our attention to the quantum signal processing (QSP) algorithm of Low and Chuang
[51, 52], as introduced in Section C.3. We estimate the success probability of the QSP algorithm in
Section H.1 and discuss how this can be taken into account to make a fair comparison with other
simulation algorithms. In Section H.2, we describe optimizations that reduce the gate count of
our implementation. Then, in Section H.3, we discuss the difficulty of computing the phases that
specify the algorithm and describe a segmented version of the algorithm that mitigates this issue.
Finally, in Section H.4, we describe empirical bounds on the error in the truncated Jacobi-Anger
expansion and in the overall algorithm.

H.1 Failure probability

Just like the TS algorithm, the QSP algorithm is probabilistic. The success probability is not
explicitly evaluated in references [51, 52]. The error analysis presented in Section C.3 guarantees
that the post-selected operator (〈+|〈G| ⊗ I)V (|+〉|G〉 ⊗ I) is close to the ideal evolution e−iHt in
the sense that

∥

∥

(

〈+|〈G| ⊗ I
)

V
(

|+〉|G〉 ⊗ I
)

− e−iHt
∥

∥ ≤ ǫ. (184)

Therefore, for any given input state |ψ〉, the postselection succeeds with probability at least
∥

∥

(

〈+|〈G| ⊗ I
)

V
(

|+〉|G〉 ⊗ |ψ〉
)∥

∥

2

≥
(∥

∥e−iHt|ψ〉
∥

∥ −
∥

∥

(

〈+|〈G| ⊗ I
)

V
(

|+〉|G〉 ⊗ |ψ〉
)

− e−iHt|ψ〉
∥

∥

)2
(185)

≥
(

1−
∥

∥

(

〈+|〈G| ⊗ I
)

V
(

|+〉|G〉 ⊗ I
)

− e−iHt
∥

∥

)2
(186)

≥ 1− 2ǫ. (187)

With ǫ = 10−3, the success probability of the QSP algorithm is at least 1− 2ǫ = 0.998. Reasoning
similarly as in Section G.2, we find that the expected number of times we must repeat the algorithm
before succeeding is approximately 1/0.998 ≈ 1.002. This factor is very close to 1, so as for the TS
algorithm, we neglect it when comparing gate counts.
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H.2 Circuit optimizations

The select(V ) gate is a major component of the QSP algorithm, so we use the optimized implemen-
tation of that subroutine described in Section G.4 in our implementation of the QSP algorithm. In
this section, we present some further circuit optimizations that also reduce the gate count.

As discussed in Section C.3, we use the phased iterate Vφ defined in (31), whereas Low and
Chuang use the operation V ′

φ defined in (40). It is easy to see that

Vφ = (I ⊗ Zπ/2)V
′
φ(I ⊗ Z−π/2), (188)

so

V †
φ = (I ⊗ Zπ/2)V

′†
φ (I ⊗ Z−π/2) (189)

also involves conjugation by I ⊗ Zπ/2. Thus, when the phased iterates are applied in the sequence
(35), the inner partial reflection gates cancel. Furthermore, Zϕ simply introduces a relative phase
between |G〉 and its orthogonal subspace, so its action is trivial if the ancilla register is initialized
in and postselected on |G〉. Thus we see that the implementation as defined in Section C.3 has the
same effect as in [51]. Each partial reflection is implemented using O(log n) elementary gates, and
there are O(n2) phased iterates, so our implementation saves O(n2 log n) gates.

We apply a similar simplification to further reduce the gate count. For every phased iterate
Vφ defined in (31), we must implement a controlled version of the operator −iQ = −i

(

(2|G〉〈G| −
I) ⊗ I

)

select(H). In particular, this requires us to perform a controlled-reflection about |G〉. We
can do this by performing a controlled-U † that unprepares the state |G〉 (where U is a unitary
operation satisfying U |0〉 = |G〉), a controlled reflection about |0〉, and finally a controlled-U that
prepares the state |G〉. However, observe that we can replace the controlled unitary conjugation
by its uncontrolled version without changing the behavior of the circuit. Furthermore, by grouping
neighboring pairs of phased iterates in the sequence of Vφ and V †

φ′ operations, we can cancel pairs

of unitary operators U and U † for state preparation and unpreparation.

H.3 Phase computation and segmented algorithm

Recall that to specify the QSP algorithm, we must find phases φ1, . . . , φM that realize the truncated
Jacobi-Anger expansion. In principle, these angles can be computed in polynomial time [53]. How-
ever, this computation is difficult in practice, so we can only carry it out for very small instances.
Specifically, we found the time required to calculate the angles to be prohibitive for values of M
greater than about 32. For n = 10 qubits with t = n and ǫ = 10−3, the error bound (38) suggests
that we should take M = 1100. Thus the difficulty of computing the angles prevents us from
synthesizing nontrivial instances of the algorithm. This difficulty arises because the procedure for
computing the angles requires us to compute the roots of a high-degree polynomial to high precision.
It is a natural open problem to give a more practical method for computing the angles.

Fortunately, to determine the Clifford+Rz gate count in our implementation of the QSP al-
gorithm, we do not need to know the angles of the phased iterates. Furthermore, since most Rz

gates require approximately the same number of Hadamard and T gates to realize within a given
precision, we can get a reasonable estimate of the Clifford+T count by using random angles in place
of the true values. However, we emphasize that this method does not produce a correct quantum
simulation circuit, and should only be used as a benchmark of the resource requirements of the
QSP algorithm—which is only useful if the true angles can ultimately be computed.

An alternative is to consider what we call a segmented version of the algorithm. In this approach,
we first divide the evolution time into r segments, each of which is sufficiently short that the angles
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Figure 7: Comparison of the number of phased iterates using optimal and segmented implementations of the
QSP algorithm.

can readily be computed. Since the optimality of the QSP approach to Hamiltonian simulation
relies essentially on simulating the entire evolution as a single segment, the segmented approach
has higher asymptotic complexity. However, it allows us to give a complete implementation, and
the overhead for moderate values of n is not too great.

To analyze the algorithm with r segments, we apply the error bound (38) with t replaced by
t/r and ǫ replaced by ǫ/r. This gives the sufficient condition

4(αt/r)q

2q q!
≤ ǫ

8r
(190)

where q = M
2 + 1. Thus

r = O
(

αt
(

αt
2ǫ(M

2
+1)!

)2/M)

(191)

segments suffice to ensure overall error at most ǫ. With t = n, α = O(n), and M a fixed constant,
we have r = O(n2+4/M ) segments. Within each segment, the number of phased iterates isM , which
is independent of the system size. Each phased iterate has circuit size O(n) using the improved
select(V ) implementation described in Section G.4. Therefore, the segmented algorithm has gate
complexity O(n3+4/M ).

In our implementation, we use M = 28 (i.e., q = 15). For the instance of quantum simulation
considered in this paper, we set ǫ = 10−3, α = 4n, and t = n. With these values, (190) shows that
it suffices to use

r ≥ 14

√

103 · 220n30
15!

= 0.6010n15/7 (192)

segments.
Figure 7 compares the total number of phased iterates used in the segmented and optimal

implementations. Over the range of interest, the segmented algorithm is only worse by a factor
between 2 and 3.
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bound for the Jacobi-Anger expansion. Here M is the number of phased iterates and n is the system size.

H.4 Empirical error bounds

The error bound (38) uses the closed-form expression (37) for the remainder of the Jacobi-Anger
expansion. While it is a convenient to use such an analytical expression, it is natural to ask how
tightly it bounds the complexity of the algorithm.

To address this question, we numerically evaluate the left-hand side of (37) for systems of
sizes ranging from 10 to 20, as shown in Figure 8. By extrapolating these data, we estimate the
complexity of the QSP algorithm for arbitrary sizes, including those for which classical evaluation
of the series is intractable. The empirical bound improves the gate count by a factor between 1.25
and 1.45 over the range of interest (10 ≤ n ≤ 100). More specifically, power law fits to the data
give

Mana = 11.30n1.988, Memp = 9.849n1.939 (193)

for the number of phased iterates using either the analytic bound or the empirical bound, respec-
tively. Since each phased iterate has gate complexity O(n) (using the technique from Section G.4),
we find that the QSP algorithm has complexity O(n2.988) (resp., O(n2.939)) using the analytic
bound (resp., empirical bound). Note that the former is roughly consistent with the upper bound
O(n3 log n) shown in Table 1.

We do not consider the empirical bound for the segmented version of the QSP algorithm, since
the savings is small in that case (even less at M = 28 than at the values shown in Figure 8),
and the main goal of the segmented approach is to have a fully-specified algorithm with rigorous
guarantees. However, we use the empirical bound to estimate resources using the non-segmented
QSP algorithm. This produces our most optimistic benchmark for the performance of the QSP
algorithm.

One could also consider a full empirical bound for the QSP algorithm by using direct simulation
to determine its true overall error. The need for ancilla qubits makes this challenging: the algorithm
uses n+⌈log 4n⌉+1 qubits to simulate an n-qubit system, as shown in Figure 2. Fortunately, unlike
with the TS algorithm, small instances of the QSP algorithm are just within reach of direct classical

51



10−6

10−5

10−4

er
ro
r

5 6 7 8 9
3× 10−11

10−10

3× 10−10

n

QSP (seg)

PF (com 1)

PF (com 2)

PF (com 4)

Figure 9: Empirical error in the segmented QSP algorithm and PF algorithms of orders 1, 2, and 4 (with
commutator bound) for small system sizes.

simulation.
However, preliminary numerical investigation suggests that the performance of the QSP algo-

rithm cannot be significantly improved using such an empirical bound. Figure 9 shows the empirical
error in the segmented QSP algorithm for small system sizes, averaging over 10 random experiments
with a fixed target error ǫ = 10−3, along with similar data for the PF algorithm using the com-
mutator bound. We observe that for system sizes between 5 and 9, the QSP error is consistently
around 5 × 10−5, which is not significantly less than the target error of 10−3. While there was
more variation in the error of the QSP algorithm as compared to the PF algorithm, in no case
was the QSP error less than 10−5. In contrast to the PF algorithm, where the error apparently
decreases as a power law in n, the QSP error shows no indication of decreasing. Furthermore, since
the complexity of the QSP algorithm depends logarithmically on the inverse error 1/ǫ, even a large
reduction in the error may not have a significant effect. For these reasons, we do not consider full
empirical error bounds in our resource estimates for the QSP algorithm.

I Detailed results

In this appendix, we present our results in more detail, expanding upon the discussion in Section 4.
First we briefly describe the variation of gate counts with respect to the random choice of
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Hamiltonian (namely, the coefficients hj ∈ [−1, 1] in (1)). For each of the system sizes considered
below, we generated five random Hamiltonians and determined the gate counts using Quipper. We
report the average gate count over the five Hamiltonians.

In the Clifford+Rz basis, the gate counts for PF algorithms are actually independent of the
particular choice of coefficients hj : the rotation angles in the circuits differ, but the number of
rotations does not. The number of gates in the Clifford+T basis depends on these angles, but only
weakly. Across orders and bounds, the T count never varies by more than 1%. The TS algorithm
is the most sensitive to the choice of Hamiltonian. For systems of size 13, the Clifford+Rz gate
counts vary by about 10%, and similarly for the T counts. However, the variance reduces as the
system size increases. For systems of size 100, the variance is about 2% across gate types. The QSP
algorithm (segmented or not) has a mild dependence on the random choice of Hamiltonian. In the
Clifford+Rz basis, the cnot and Rz counts are independent of the choice of Hamiltonian while the
Clifford counts vary by less than 1%. Because the rotation angles depend on the Hamiltonian, the
T count depends on the choice of Hamiltonian, but again the observed variation is always less than
1%.

In the remainder of this section, we present our results in detail. We discuss the PF algorithm
first, in Section I.1, since this case has the most variations to compare. Then, in Section I.2, we
present results for the TS and QSP algorithms and discuss the relative performance of all three
approaches. In Section I.3, we explain how the circuit counts are improved using our automated
circuit optimizer.

I.1 Product formulas

The performance of quantum simulation algorithms using product formulas depends strongly on
the order of the formula and the method used to bound its error. We now compare the effect of
these choices.

Figure 10 compares the total gate counts of simulation algorithms using product formulas of
various orders with each of our four error bounds. Using rigorous bounds, for system sizes between
13 and 500, the fourth-order algorithm outperforms other orders except for very small system sizes.
The second-order algorithm is preferred for the largest range of system sizes with the minimized
bound, but even in that case, it only outperforms the fourth-order algorithm for n ≤ 28. Similar
considerations hold for Clifford+T circuits and when we only count gates of a particular type.
Overall, it is clear that the fourth-order algorithm using the commutator bound is preferred for our
application if one requires a provable guarantee on the error. If a heuristic method is acceptable, the
empirical bound offers a dramatic reduction in complexity. In that case, the sixth-order algorithm
begins to outperform the fourth-order algorithm at around 30 qubits, although the difference is
small for the range of sizes we focus on (at most 100 qubits).

Of the cases we considered, the first-order algorithm has the worst performance, using from
102 to over 104 times more gates than the fourth- or sixth-order algorithm. The experimental
demonstrations of digital quantum simulation that we are aware of [6, 19, 48] have primarily used
the first-order formula, with some limited applications of the second-order formula [19, 48]. Our
work suggests that higher-order formulas may be practically relevant for surprisingly small instances,
and we hope our results motivate practitioners to take advantage of this.

We did not evaluate the commutator bound for orders higher than 4. This is because the bound
is difficult to compute in practice, as discussed in Section F.2. Since the fourth-order algorithm
performs significantly better than the sixth-order one for both the analytic and minimized bounds,
we also expect the fourth-order algorithm to outperform the sixth-order algorithm even if we used
an analogous sixth-order commutator bound.
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Figure 10: Total gate counts in the Clifford+Rz basis for product formula algorithms using the analytic (top
left), minimized (top right), commutator (bottom left), and empirical (bottom right) bounds, for system
sizes between 13 and 500.

Figure 11 shows the total gate counts for the Clifford+Rz gate set using the fourth-order algo-
rithm with the analytic, minimized, commutator, and empirical bounds. The commutator bound
saves a factor of more than 10 over the minimized bound, a significant improvement in practical
terms. The empirical bound results in even greater savings of a further factor of about 100 (for
system sizes in the 10s) to over 500 (for system sizes around 100). Clearly, the empirical bound
is strongly preferred if one can tolerate its lack of a rigorous correctness guarantee. This suggests
that existing rigorous bounds are quite loose, so a natural open problem is to establish stronger
rigorous bounds, as mentioned in Section 5.

In fact, the commutator and empirical bounds not only reduce the gate count for small in-
stances, but actually improve the dependence on system size n. This is evident in Figure 11,
where the slope of the data is reduced for the commutator and empirical bounds. Table 3 presents
the exponents of n, both for the proven performance of the commutator bound (as stated in
Theorem F.5, Theorem F.10, and Theorem F.11) and the numerically observed performance of the
empirical bound. Surprisingly, the empirical bound appears to give better asymptotic performance
than O(n3) (the best asymptotic gate complexity listed in Table 1): in particular, the eighth-order
formula has asymptotic empirical complexity only slightly greater than quadratic in n.

While our empirical bound is only directly applicable to the particular system and parameters
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Figure 11: Total gate counts of Clifford+Rz circuits using the fourth-order PF algorithm and varying bounds
for system sizes between 10 and 500.

Order

Bound 1 2 4 6 8

Analytic/Minimized 5 4 3.5 3.333 3.25

Commutator 4 3.667 3.4 3.286 3.222

Empirical 2.964 2.883 2.555 2.311 2.141 2 4 6 8
2

3

4

5

1

Order

E
x
p
o
n
en

t

Table 3: Exponent of n in the asymptotic gate complexity of product formula simulation algorithms using
various error bounds.

considered in our study, we expect that qualitatively similar improvements should apply in other
cases. In particular, we performed a similar extrapolation for the fourth-order product formula
applied to the same system with h = 1/10 and h = 10. We found very similar performance estimates
for these parameters, with essentially the same exponent of n and slightly different prefactors.

Note that while the constants in high-order commutator bounds are nontrivial to compute, we
can more easily determine the asymptotic performance of these bounds, as discussed at the end of
Section F.2. The lowest-order error in the (2k)th-order product formula is O(n4k+2/r2k+1). Our
commutator bound utilizes the commutation relations to reduce the n-dependence of this lowest-
order error to O(n4k+1/r2k+1), while the remaining higher-order terms are handled by standard
techniques [11]. The resulting asymptotic performance is O(n3+2/(2k+1)), improving over the com-
plexity O(n3+1/k) obtained using the standard bound.

I.2 Other algorithms and comparisons

Figure 12 compares gate counts for the fourth-order PF algorithm with commutator bound, the
better of the fourth- or sixth-order PF algorithm with empirical bound, the TS algorithm, and the
QSP algorithm (in both its segmented and non-segmented versions).

Observe that the TS algorithm outperforms the fourth-order PF algorithm with rigorous per-
formance guarantees provided n is at least about 30. However, the cnot count over Clifford+Rz

is only negligibly improved, whereas the T count over Clifford+T is improved by a factor of about
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7. This advantage comes at a significant cost in terms of space, as discussed in Section 1. For
system sizes between 20 and 50, the TS algorithm uses between 116 and 171 qubits, whereas the
PF algorithm has no space overhead. Furthermore, the QSP algorithm always outperforms the TS
algorithm with respect to both circuit size and number of qubits, so it is clearly preferred.

Recall that we implemented two variants of the QSP algorithm: the full algorithm (with random
rotation angles in place of the true, hard-to-compute values) using the empirical Jacobi-Anger
bound (193), and the segmented version using the rigorous error bound (190). Among all algorithms
with a complete implementation and a rigorous accuracy guarantee, the segmented QSP algorithm
has the lowest gate counts. With respect to the cnot count, it outperforms the fourth-order PF
algorithm, and even the TS algorithm, by a factor of at least 5. The improvement in the T count is
greater. The full QSP algorithm with empirical Jacobi-Anger bound has even lower gate complexity,
but this will only be useful in practice if one can overcome the difficulty of classically computing
the rotation angles. Furthermore, if we are willing to accept heuristic error estimates, then the PF
algorithm significantly outperforms either QSP algorithm while also requiring no ancilla qubits.

I.3 Circuit optimization

To reduce the resource requirements for quantum simulation as much as possible, we post-processed
all of our circuits with an automated circuit optimizer [57] as described in Section E.3. Figure 12
compares the gate counts of the PF, TS, and QSP algorithms before and after this optimization. The
cnot and T counts of the fourth-order PF algorithm are both reduced by about 30% throughout
the range of interest. While the gate counts of the TS and QSP algorithms are also reduced, the
improvement is much less significant.

For the Clifford+Rz resource estimates (see the left plot in Figure 12), the PF circuits show
a 33% reduction in cnot count, whereas both the TS and QSP circuits admit only about 1%
reduction in their cnot counts. We expect to see improvements in the cnot count reduction for
the TS and QSP circuits when using heavy instead of light optimization, although preliminary
results suggest that this reduction will not qualitatively change the relative performance of the
different algorithms. For the Clifford+T resource estimates (see the right plot in Figure 12), the T
count reduction is approximately 30% for the PF algorithm, 0.5% for TS, and 1% for QSP.

With respect to cnot count, whereas the TS algorithm outperforms the best PF algorithm with
rigorous performance guarantees for all system sizes shown in Figure 12, optimization improves the
PF algorithm to outperform the TS algorithm for system sizes smaller than about 30. While the
TS algorithm is dominated by the more efficient QSP approach, this example nevertheless shows
that optimization can sometimes affect the relative performance of algorithms.

We also compare the optimization of PF algorithms of different orders, as shown in Figure 13.
We plot gate counts for PF circuits with the empirical bound, which offers the best performance.
Since the structure of the PF circuit is not affected by choosing a different error bound, essentially
the same relative improvements hold for other bounds as well.

The first-order PF circuits do not admit any optimization in the cnot counts. The remaining
PF circuits admit cnot gate count reduction of about 33%, with marginally more savings observed
for higher orders (although this additional gain is too small to see in the scale used in Figure 13).
The Rz count of the PF circuits behaves similarly under optimization. For the first-order PF
circuits, the Rz count is not reduced. However, for all higher-order circuits, the optimizer can
take advantage of the reflection symmetry in formulas of order 2 and higher, which reduces the Rz

counts in the original Clifford+Rz circuits. The observed reduction is about 29%.
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Figure 12: Gate counts before (diamonds) and after (circles) circuit optimization. Left: cnot gates over
Clifford+Rz. Right: T gates over Clifford+T .
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Figure 13: Gate counts before (diamonds) and after (circles) circuit optimization for the first, second, fourth
and sixth order PF algorithm with empirical bound. Left: cnot gates over Clifford+Rz. Right: Rz gates
over Clifford+Rz.
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[6] R. Barends, L. Lamata, J. Kelly, L. Garćıa-Álvarez, A. G. Fowler, A Megrant, E Jeffrey, T. C.
White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth,
I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner,
E. Solano, and John M. Martinis, Digital quantum simulation of fermionic models with a
superconducting circuit, Nature Communications 6 (2015), 7654, arXiv:1501.07703.

[7] Bela Bauer and Chetan Nayak, Analyzing many-body localization with a quantum computer,
Physical Review X 4 (2014), no. 4, 041021, arXiv:1407.1840.

[8] Stephane Beauregard, Circuit for Shor’s algorithm using 2n+3 qubits, Quantum Information
and Computation 3 (2003), no. 2, 175–185, arXiv:quant-ph/0205095.

[9] David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and John Preskill,
Efficient networks for quantum factoring, Physical Review A 54 (1996), 1034–1063,
arXiv:quant-ph/9602016.

[10] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes
Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan
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