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Abstract

The quantum linear system problem provides one of the most enticing sources of exponen-
tial quantum speedups, and its resolution underlies other interesting quantum algorithms for
differential equations and eigenvalue processing. The goal is to produce a state proportional to
the solution A−1|b⟩ of a linear system with accuracy ϵ, by querying an oracle OA that block
encodes the coefficient matrix and an oracle Ob that prepares the initial state.

We present a quantum linear system algorithm with query complexity Θ
(
1/
√
p
)
to Ob that

is optimal, and query complexity O (κ log (1/p) (log log (1/p) + log (1/ϵ))) to OA that is nearly
optimal in all parameters including the condition number κ = ∥A∥∥A−1∥ and success amplitude√
p = ∥A−1|b⟩∥/∥A−1∥. In various applications to solving differential equations, preparing

ground states of operators with real spectra, estimating and transforming eigenvalues of non-
normal matrices, we can further improve the dependence on p to nearly match or outperform
best previous results based on other methods. As κ can be arbitrarily larger than 1/

√
p, our

algorithm contrasts with recent results that have O (κ log (1/ϵ)) complexity to both oracles,
which, while optimal in OA, is highly suboptimal in Ob.

We achieve this by a new Variable Time Amplitude Amplification algorithm with Tunable
thresholds (Tunable VTAA), which fully characterizes generic nested amplitude amplifications,
eliminates redundant nestings, and is of independent interest. With an optimized schedule of
thresholds, we prove that the complexity of Tunable VTAA scales with ℓ 2

3
-quasinorm of the

input costs, improving over the ℓ1-norm result of Ambainis and the more common ℓ2-norm
scaling. Specialized to the quantum linear system problem, we construct a discretized inverse
state, for which a deterministic amplification schedule exists. This leads to a substantially
simplified VTAA with an optimal initial state preparation cost, even when the solution norm is
not known a priori .

We also introduce a block preconditioning scheme that can artificially boost
√
p in generic

situations, in contrast to previous negative preconditioning results focusing on reducing κ. This
further reduces the cost of initial state preparation in linear-system-based differential equation
solvers, ground state preparators and eigenvalue processors. Additionally, block preconditioning
furnishes a particularly simple quantum linear system algorithm with optimal O

(
κ log

(
1
ϵ

))

queries to OA by using |b⟩ itself as the preconditioner. It also realizes a block-encoded eigenvalue
transformer with O(n) scaling in degree of the target polynomial, compared to the best existing
result of O

(
n1.5

)
.

Most of the work was completed while the first author was affiliated with Microsoft.
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1 Introduction

1.1 Quantum linear system algorithms

The problem of solving large systems of linear equations provides one of the most enticing sources
of exponential speedups for quantum computers. Since the output of any quantum circuit can be
simulated by inverting an appropriately chosen matrix, the quantum linear system problem is BQP-
complete and captures the full potential of quantum computing—this was proved in the seminal
work by Harrow, Hassidim and Lloyd [25], where the first quantum algorithm for sparse systems of
linear equations was developed. As linear equations are ubiquitous in science, quantum linear sys-
tem algorithms have found broad applications such as computing electromagnetic scattering [45],
estimating electrical resistance of networks [59], solving differential equations [4, 8, 9, 20, 32],
optimization, and more recently, processing eigenvalues of non-normal matrices [39]. While identi-
fying end-to-end scientific applications of quantum linear system solvers with exponential speedups
remains challenging, physically-motivated candidates such as computing Green’s functions of quan-
tum many-body systems [56] may have well-characterized complexities.

Quantum linear system solvers also provide a natural reduction for designing more advanced
quantum algorithms. One class of these algorithms aim to efficiently apply functions f(A) to high-
dimensional matrices accessed by a quantum computer through block encoding oracles. When
the input is Hermitian, the target function can be readily implemented by the so-called Quantum
Singular Value Transformation (QSVT) [22], which since its conception has unified many exist-
ing quantum algorithms and uncovered new ones [41]. The general case where A is non-normal is
relevant for various other applications such as solving differential equations and simulating transcor-
related quantum chemistry, but the problem appears to be considerably more difficult. One prior
approach [20, 54–56] uses the Cauchy integral formula: f(A) = 1

2πi

∫
C dz f(z)(zI − A)−1 for C a

contour enclosing all eigenvalues of A. By discretizing the integral, f(A) can be approximated by
a linear combination of matrix inverses. Alternative method employs a rational matrix generating
function to create a history state encoding a polynomial basis in quantum superposition, which
can be post-processed to yield the desired f(A). This technique was initially developed to create
monomial basis for solving differential equations [9], but is more recently extended to handle Faber
polynomials [39] for implementing more general functions over the complex plane. In any event,
these advanced algorithms all rely on quantum linear system solvers as a subroutine and would
directly benefit from any enhancements to the solvers.

With an eye towards these applications, we now take a closer look at the cost of quantum linear
system algorithms. Here, the goal is to produce a state proportional to the solution A−1|b⟩ of a
linear system, using oracular queries to the coefficient matrix A and the initial state |b⟩. The query
complexity of quantum linear system algorithms has gradually improved over a long series of work.
The seminal work of Harrow, Hassidim and Lloyd showed that O

(
poly

(
κ, 1ϵ

))
queries suffice to

produce the solution state with accuracy ϵ [25], where

κ = ∥A∥
∥∥A−1

∥∥ (1)

is the spectral condition number of the target linear system. The scaling in κ was later improved to
almost linear by Ambainis’ Variable Time Amplitude Amplification (VTAA) algorithm [2]. Subse-
quently, the error scaling is improved exponentially to O

(
polylog

(
1
ϵ

))
using a linear combination

of quantum walks within VTAA [15]. Recent work achieves a similar scaling in κ and ϵ using alter-
native methods based on the adiabatic evolution and eigenstate filtering [5, 35, 53]. This ultimately
culminated in an algorithm with O

(
κ log

(
1
ϵ

))
scaling and constant success probability [18]—this

was claimed to be optimal, citing an unpublished lower bound by Harrow and Kothari. Even
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more recently, a simpler quantum algorithm with the same O
(
κ log

(
1
ϵ

))
scaling was designed by

performing kernel reflection on an augmented linear system [19].
There are two distinct query oracles involved in the quantum linear system problem: the first

one is OA which block encodes the matrix A to be inverted, and the second one is Ob which prepares
the initial state |b⟩ from a standard reference state, chosen to be the computational basis state |0⟩
without loss of generality. The query complexities cited above are all the worst-case combined cost
where the two oracles OA and Ob are treated on equal footing. However, the cost to Ob can in fact
be much lower than that to OA, as we will now argue.

Consider the approach where we first construct a block encoding of A−1

2∥A−1∥ (we have used
∥∥A−1

∥∥
in place of its upper bound for presentational purpose). This can be achieved using QSVT with
accuracy ϵ by making O

(
κ log

(
1
ϵ

))
queries to OA [22, Corollary 69]. Applying it to the initial

state then produces the unnormalized state A−1|b⟩
2∥A−1∥ with accuracy ϵ and success probability psucc

4 ,

consuming one query to Ob, where

psucc =

∥∥A−1|b⟩
∥∥2

∥A−1∥2
, 1 ≤ 1√

psucc
=

∥∥A−1
∥∥

∥A−1|b⟩∥ ≤ κ. (2)

This probability can be boosted close to unity with O
(

1√
psucc

)
rounds of amplitude amplification,

but the error of solution state is also amplified accordingly. So to achieve an accuracy ϵ in A−1|b⟩
∥A−1|b⟩∥ ,

it suffices to query the oracles a number of times scaling like

O

(
1√
psucc

Cost(Ob) +
κ√
psucc

log

(
1√
psuccϵ

)
Cost (OA)

)
. (3)

Thus the number of queries to Ob attains a strictly linear scaling with 1√
psucc

, surpassing almost all

previous results quoted in Table 1 and can be much smaller than κ in practice. In fact, this scaling
is already achievable by the algorithm of [25] as is observed in [51]. Note also that the approach
works even without a prior knowledge of psucc, in which case we simply use the success probability
lower bound αpsucc ≤ psucc. Of course, this makes O

(
κ2 log

(
κ
ϵ

))
queries to OA when 1√

psucc
≈ κ,

suffering from a quadratic slow down in the worst case. Methods based on the adiabatic theorem
and kernel reflection technique have the scaling

O

(
κ log

(
1

ϵ

)
Cost(Ob) + κ log

(
1

ϵ

)
Cost(OA)

)
, (4)

where the complexity of initial state preparation becomes significantly worse.
To date, the one and only one method offering a close-to-optimal complexity simultaneously to

both Ob and OA is based on VTAA. The state-of-the-art VTAA algorithm makes O
(

1√
psucc

log(κ)
)

queries to Ob, under the nontrivial assumption that the probabilities with which the algorithm po-
tentially succeeds at intermediate stages are all estimated to a constant multiplicative accuracy [12].

Without this prior knowledge, the query complexity worsens to O
(

1√
psucc

log3(κ) log log(κ)
)
, and

the algorithm becomes considerably more complicated (although this is a one-time cost to pay only
when VTAA is compiled into a quantum circuit).

Suppose one were willing to accept the logarithmic slowdown of VTAA and its substantial setup
cost—would that improve the complexity of initial state preparation for existing quantum differ-
ential equation solvers, eigenvalue estimators and transformers? In solving differential equations,
the norm

∥∥A−1
∥∥ ∼ t scales close to linearly with the evolution time t, whereas

∥∥A−1|b⟩
∥∥ ∼

√
t. So
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Year Algorithm Primary innovation Queries to Ob Queries to OA

2008 [25]
Phase estimation

+ Hamiltonian simulation
O( 1√

psucc
) O

(
κ√

psuccϵ2

)

2012 [2] VTAA O
(
κpolylog

(
κ
ϵ

))
O
(
κ
ϵ3
log3

(
κ
ϵ

)
) log2

(
1
ϵ

))

2017 [15] Linear combination of quantum walks O( 1√
psucc

log
(
κ
ϵ

)
) O

(
κ√
psucc

polylog
(
κ
ϵ

))

2017 [15]
Gapped phase estimation
+ Quantum walk + VTAA

O(κpolylog
(
κ
ϵ

)
) O

(
κpolylog

(
κ
ϵ

))

2018 [53] Randomized abiabatic evolution O
(
κ
ϵ log(κ)

)
O
(
κ
ϵ log(κ)

)

2018 [12] Detailed analysis of VTAA O
(

1√
psucc

log(κ)
)

O
(
κ log(κ) log2

(
κ
ϵ

))

2019 [5] Continuous time abiabatic evolution O
(
κpolylog

(
κ
ϵ

))
O
(
κpolylog

(
κ
ϵ

))

2019 [35] Eigenstate filtering O
(
κ log

(
κ
ϵ

))
O
(
κ log

(
κ
ϵ

))

2022 [18] Discrete time adiabatic evolution O
(
κ log

(
1
ϵ

))
Θ
(
κ log

(
1
ϵ

))

2023 [13] QSVT-based GPE + VTAA O
(

1√
psucc

log(κ)
)

O
(
κ log(κ) log

(
κ
ϵ

))

2024 [19] Kernel reflection O
(
κ log

(
1
ϵ

))
Θ
(
κ log

(
1
ϵ

))

2024 This work
Tunable VTAA

+ Discretized inverse state
Θ
(

1√
psucc

)
O
(
κ log

(
1√
psucc

)
log
(
log(1/

√
psucc)

ϵ

))

2024 This work Block preconditioning O
(
κ log

(
1
ϵ

))
Θ
(
κ log

(
1
ϵ

))

Table 1: Complexity comparison of the new and previous methods for the quantum linear system problem.
Optimal query complexities are shaded dark gray. The present work achieves for the first time an optimal
query complexity to initial state preparation among innovations shaded light gray with nearly optimal
query complexity to both oracles. The block preconditioning technique further boosts psucc close to 1
in applications to solving differential equations, preparing ground states of non-Hermitian operators and
eigenvalue processing, and furnishes an extremely simple algorithm with an optimal coefficient block encoding
complexity in the last row.

the dependence on inverse success amplitude scales like ∼
√
t, but there exist methods with cost

independent of the evolution time [4, 20]. In estimating eigenvalues of non-normal matrices, the
norm

∥∥A−1
∥∥ ∼ 1

ϵ scales linearly with the inverse accuracy, whereas
∥∥A−1|b⟩

∥∥ ∼ 1√
ϵ
. So the depen-

dence on inverse success amplitude scales like ∼ 1√
ϵ
, but again there exist methods with complexity

independent of the inverse accuracy [60]. In all cases, one finds oneself in the intermediate regime
where

1 ≪ 1√
psucc

=

∥∥A−1
∥∥

∥A−1|b⟩∥ ≪ κ = ∥A∥
∥∥A−1

∥∥ , (5)

with a high query complexity of initial state preparation. This becomes problematic when the initial
state itself is created by an expensive quantum subroutine, as could arise in natural applications
to ground state preparation [10], differential equations, and eigenvalue processing.

1.2 Main result

We develop faster quantum linear system algorithms, with a focus on improving the query com-
plexity of initial state preparation. Our main result includes the following.

(i) We develop a quantum linear system algorithm that makes Θ
(

1√
psucc

)
queries to Ob and

O
(
κ log

(
1√
psucc

)(
log log

(
1√
psucc

)
+ log

(
1
ϵ

)))
queries to OA. The strictly linear scaling with

inverse success amplitude holds even when a multiplicative estimate of solution norm
∥∥A−1|b⟩

∥∥
is unavailable, where psucc is replaced by its lower bound, in contrast to all previous approaches
where finding such an estimate incurs polylogarithmic overhead. The optimal lower bound
to Ob is proven through a reduction to Grover search.
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Quantum linear system solver
(optimal initial state preparation)

Solution norm estimator
(optimal initial state preparation)

Main algorithms

Tunable VTAA

Discretized inverse state

Block preconditioning

Main techniques

Quantum linear system solver
(optimal coefficient matrix block encoding)

Quantum eigenvalue estimator
(improved initial state preparation)

Quantum differential equation solver
(optimal initial state preparation)

Quantum eigenvalue transformer
(improved initial state preparation)

Quantum ground state preparator
(improved initial state preparation)

Quantum eigenvalue transformer
(linear degree block encoding)

Applications

Figure 1: A diagrammatic illustration of the main result and its applications.

(ii) We show how one can artificially boost psucc close to 1. We demonstrate that this leads to dif-
ferential equation solvers, ground state preparators and eigenvalue processors with improved
complexities of initial state preparation, matching or outperforming the state of the art.

Result (i) is realized by a substantially simplified VTAA that uses a deterministic amplification
schedule, whose prerequisites are met by a discretized inverse state we design. Result (ii) is based
on a simple block preconditioning technique that amplifies a subspace flagged by the initial ancilla
state.

Additionally, we find that the block preconditioning technique can be more broadly applied
to improve other complexity scalings of quantum linear system solvers. Specifically, by choosing
initial state |b⟩ itself as the preconditioner, we develop a simple quantum linear system algorithm
that makes O

(
κ log

(
1
ϵ

))
queries to both OA and Ob. Our method appears to be conceptually even

simpler than the recent kernel-reflection approach [19]. We also develop a block-encoded quantum
eigenvalue transformation algorithm with O(n) scaling in degree of the target polynomial, by
applying the preconditioning technique within the block-encoded version of quantum linear system
algorithm, whereas the best previous result was O(n1.5). We illustrate our results in Figure 1 and
tabulate them in Table 1 and Table 2 against previous results.

1.3 Tunable variable time amplitude amplification

Our first main technical contribution is the analysis of a generic version of VTAA in Section 3, with
adjustable amplification thresholds that can be tuned/optimized for different input algorithms and
initial states. We name this method Tunable VTAA.

Before discussing Tunable VTAA in detail, let us first review the VTAA framework introduced
by Ambainis [2]. The goal here is to construct a quantum state by applying a sequence of quantum
algorithms A1, . . . , Am on a starting state |ψ0⟩ incrementally, where the desired state resides in a
subspace flagged by the flag projection Πb = I − Πb. If we apply the quantum algorithms naively,
then the state is prepared with probability

psucc =
∥∥ΠbAm · · ·A1|ψ0⟩

∥∥2 . (6)
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To prepare it with probability close to unity, we perform O
(

1√
psucc

)
rounds of amplitude amplifi-

cation, leading to a total cost of

O


 1√

psucc
Cost (|ψ0⟩) +

1√
psucc

m∑

j=1

Cost (Aj)


 . (7)

This is a worst-case scenario as all input algorithms A1, . . . , Am are treated on equal footing
and get invoked the same number of times in the final stage. VTAA avoids this worst-case cost by
performing amplitude amplification at intermediate stages. Formally, we havem+1 orthogonal pro-
jections Πj (j = 0, . . . ,m), all commuting with Πb and partially ordered according to their positive
semidefinitess as 0 = Π0 ≤ Π1 ≤ · · · ≤ Πm = I. These clock projections are used to represent that
quantum algorithms can terminate early at or before intermediate stages, i.e., we have AjΠj−1 =
Πj−1 for all j = 1, . . . ,m. Then instead of deferring the amplification to the very end, we perform
rj rounds of amplitude amplification at stage j toward the potentially good subspace flagged by

ΠjΠb = I − ΠjΠb. This means Ãj =
(
−
(
I − 2AjÃj−1|ψ0⟩⟨ψ0|Ã†

j−1A
†
j

) (
I − 2ΠjΠb

))rj
AjÃj−1,

where Ã0 = I. We call 2rj + 1 the amplification schedules or amplification step numbers.

To ensure that Ãm produces the desired state with a sufficiently large probability, one needs
to carefully choose rj to avoid under/over amplification. In the work of [2] and many of its fol-
lowups, the schedule is chosen as follows: set rj to be the smallest nonnegative integer satisfying

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≥ 1
3
√
m
. Then using the state-of-the-art VTAA analysis, this gives an

algorithm with query complexity

O




√
m√
psucc

Cost (|ψ0⟩) +
√
m√
psucc

m∑

j=1

∥∥Πj−1ΠbAj−1 · · ·A1|ψ0⟩
∥∥Cost (Aj)


 . (8)

Compared to the naive amplification cost Eq. (7), VTAA makes fewer queries to the input algo-
rithms by balancing the summation of cost. Note the above discussion implicitly assumes that

the amplitudes
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ are known a prior. This assumption is only for presentational

purpose: asymptotic scaling of the complexity remains the same if we have a constant multiplica-
tive estimate of the amplitudes instead. Otherwise, we need to perform amplitude estimation to

compute each
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ to a constant multiplicative accuracy, incurring a substantial

overhead—although this only needs to be done once during compilation.
In contrast, our Tunable VTAA uses the following schedule: set rj to be the smallest nonneg-

ative integer satisfying (2rj + 1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≥ 1
3

√
αj . Here αj are amplification thresholds

satisfying the technical conditions 0 ≤ αj ≤ 1 and
∑m

j=1 αj = O(1). Obviously, Tunable VTAA
offers more flexibility as αj can now be tuned/optimized for different input algorithms and initial
states, although it may not be immediately apparent how much more powerful it is over previous
results. We prove the following.

(i) Tunable VTAA consists of nested amplitude amplifications with
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≤ 1
2rj+1

and constant loss factor
∏m
j=1

∥ΠjΠbÃj |ψ0⟩∥
(2rj+1)∥ΠjΠbAjÃj−1|ψ0⟩∥ = Ω(1). Conversely, any nested ampli-

tude amplifications with no overshoot
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≤ 1
3(2rj+1) and constant loss factor

∏m
j=1

∥ΠjΠbÃj |ψ0⟩∥
(2rj+1)∥ΠjΠbAjÃj−1|ψ0⟩∥ = Ω(1) is a Tunable VTAA.
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(ii) Nontrivial amplifications rj ≥ 1 in Tunable VTAA happen only at l stages 1 ≤ s1 ≤ · · · ≤
sl ≤ m, where

l = O

(
log

(
1√
psucc

))
. (9)

Under the convention sl+1 = m+ 1 and Am+1 = I, Tunable VTAA has query complexity

O

(
1√
psucc

Cost(As1 · · ·A1|ψ0⟩) +
1√
psucc

l+1∑

v=2

1
√
αsv−1

∥∥Πsv−1
ΠbAsv−1

· · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)
)
,

(10)

(iii) Pre-merging trivial stages and using thresholds

αsv−1 ∝
(∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩

∥∥Cost
(
Asv · · ·Asv−1+1

)) 2
3 , (11)

Tunable VTAA attains the ℓ 2
3
-quasinorm scaling

O


 1√

psucc
Cost(As1 · · ·A1|ψ0⟩) +

1√
psucc

(
l+1∑

v=2

(∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)) 2
3

) 3
2


 .

(12)

Let us interpret this result. Property (i) shows that Tunable VTAA is universal, in the sense
that it captures the full power of a generic nested amplitude amplification algorithm. Stated
differently, to improve the complexity of a nested amplification, it suffices to optimize over the
threshold values. Such an exhaustive optimization can be computationally demanding, but one
may find suboptimal thresholds that have analytic forms. In any event, it is this universality that
motivates us to examine Tunable VTAA in greater detail. Property (ii) demonstrates that the
number of nontrivial amplification stages is at most logarithmic in the inverse success amplitude.

Thus in the regime where log
(

1√
psucc

)
≪ m, majority of the input algorithms can be pre-merged

and VTAA can be significantly simplified. Our query complexity then follows from a tightened
analysis of VTAA with a

√
m factor improvement, taking into account the fact that trivial stages

can be pre-merged. To compile this into a quantum algorithm, one would naively estimate all∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥ using amplitude estimation and compare with threshold values to determine

the schedule, but this is not really necessary if the amplification thresholds are chosen analytically,
as we will show for the quantum linear system problem. Property (iii) follows by minimizing the cost
of Tunable VTAA under the constraints 0 ≤ αsv−1 ≤ 1 and

∑l+1
v=2 αsv−1 = O(1). This ℓ 2

3
-quasinorm

scaling is lower than the ℓ1- or ℓ2-norm result from previous work as

(
l+1∑

v=2

(∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)) 2
3

) 3
2

≤
√
l
l+1∑

v=2

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)
.

(13)

Again, to achieve this “ultimate performance” of VTAA with a quantum algorithm, one needs to
estimate all potentially good probabilities

∥∥Πj−1ΠbAj−1 · · ·A1|ψ0⟩
∥∥ with logarithmic overhead, so

this is more advantageous in cases where the algorithm may be repeatedly invoked after compilation.
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1.4 Discretized inverse state

For the quantum linear system problem, our goal is to produce a normalized version of the solution
A−1|b⟩. Here, the coefficient matrix is block encoded as A/αA with normalization factor αA ≥ ∥A∥,
and a norm upper bound on its inverse αA−1 ≥

∥∥A−1
∥∥ is known a prior. By considering the

Hermitian dilation |0⟩⟨1| ⊗ A+ |1⟩⟨0| ⊗ A†, we may without loss of generality assume that A itself
is Hermitian and has the spectral decomposition A =

∑
u λu|ϕu⟩⟨ϕu|, where 1

αA−1
≤ |λu| ≤ αA.

Meanwhile, the initial state can be expanded in the eigenbasis as |b⟩ =
∑

u γu|ϕu⟩, so a direct
application of QSVT produces an unnormalized state close to

A−1

2αA−1

|b⟩ =
∑

u

1

2αA−1λu
γu|ϕu⟩,

∥∥A−1|b⟩
∥∥

αA−1

=
1

αA−1

√√√√∑

u

∣∣∣∣
γu
λu

∣∣∣∣
2

=
√
psucc. (14)

In prior art [15], the solution is prepared by enlarging the Hilbert space and constructing an
intermediate state of the form

ψinv =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

2k+1 ,
1

2k

)
1

αA−1λu
(ζk+1,u|k⟩+ ζk,u|k − 1⟩) γu|ϕu⟩,

∥ψinv∥ =
1

αA−1

√√√√√
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

2k+1 ,
1

2k

)
(
|ζk+1,u|2 + |ζk,u|2

) ∣∣∣∣
γu
λu

∣∣∣∣
2

=
√
psucc,inv.

(15)

Here, the ancilla register can be thought of as a “clock register” holdingm = Ceil (log2 (αAαA−1)) =
Θ(log(κ)) values, and |ζk+1,u|2 + |ζk,u|2 ⪅ 1 are close to being normalized for all u, implying
psucc,inv = Θ(psucc). This intermediate state can in turn be created using VTAA with a constant

success probability. Specifically, one chooses the clock projections to be Πj =
∑j−1

k=0 |k⟩⟨k| for
j = 1, . . . ,m, satisfying 0 ≤ Π1 ≤ Π2 ≤ · · · ≤ Πm = I. Within the VTAA stage k, one performs a
procedure called Gapped Phase Estimation (GPE) to approximately check whether the eigenvalues

are in
∣∣∣ λuαA

∣∣∣ ∈
[

1
2k
, 1
)
with a certain confidence level, inverting the matrix if the condition is satisfied

and terminating the current branch of computation afterwards. Finally, the clock register can be
uncomputed by running GPE in reverse (without VTAA), resulting in the desired A−1|b⟩.

Our second main technical contribution, to be detailed in Section 4, is the replacement of above
state by the discretized inverse state

ψd-inv =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

ρk+1 ,
1

ρk

)

(
ζk+1,u

ρk+1

ρm
|k⟩+ ζk,u

ρk

ρm
|k − 1⟩

)
γu|ϕu⟩,

∥ψd-inv∥ =

√√√√√
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

ρk+1 ,
1

ρk

)

(∣∣∣∣ζk+1,u
ρk+1

ρm

∣∣∣∣
2

+

∣∣∣∣ζk,u
ρk

ρm

∣∣∣∣
2
)
|γu|2 = √

psucc,d-inv,

(16)

where ρ is an odd integer which can be chosen as ρ = 3 without loss of generality and m =
Ceil (log3 (αAαA−1)) = Θ(log(κ)). Note that we have switched from a base-2 partition of the
eigenvalues to an odd-number base partition. This change plays the central role in achieving the
optimal initial state preparation cost while substantially simplifying the structure of VTAA. We
will return to this point momentarily. The second change is we replace the eigenvalue inversion

10



1
λu

by the discrete values 3k+1

3m and 3k

3m , which can be introduced using only controlled single-
qubit rotations. This modification frees the expensive matrix inversion from any nested amplitude
amplifications, further simplifying the algorithm. Otherwise, we still perform GPE in each stage

k with cost O
(
3k log

(
1
ϵgpe

))
. Since the eigenvalues are discretized with constant multiplicative

accuracy, we have psucc,d-inv = Θ(psucc).
We now explain how to achieve optimal initial state preparation cost with a simple VTAA sched-

ule. We first recall from Property (ii) that nontrivial amplifications happen only atO
(
log
(

1√
psucc

))

stages of VTAA, and majority of the algorithms can be pre-merged. In our case, the complex-
ity 3k increases exponentially in k, so intuitively one should pre-merge the initial stages with
lower cost. We rigorize this idea by showing that the asymptotic complexity of VTAA remains

unaffected after pre-merging the first m − l stages, as long as l = Ω
(
log3

(
1√
psucc

))
. For the

quantum linear system problem, the ℓ 2
3
-quasinorm from Property (iii) can be difficult to evaluate

directly, so we relax it to the ℓ2-norm, which is attained by setting the amplification thresholds

αk ∝ 9k
∥∥ΠkΠbAk · · ·A1|ψ0⟩

∥∥2. These values sum up to
∑m

k=m−l+1 9
k
∥∥ΠkΠbAk · · ·A1|ψ0⟩

∥∥2 =

O (9mpsucc), so we should choose αk = Θ

(
9k∥ΠkΠbAk···A1|ψ0⟩∥2

9mpsucc

)
to fulfill the requirement

∑
k αk =

O(1). With the ℓ2-norm cost, the Tunable VTAA makes O
(
l3m log

(
1
ϵgpe

))
queries to the block

encoding oracle OA. This cost can be minimized by reducing l, but recall that we need l sufficiently

large due to pre-merging, so we should choose l = Θ
(
log3

(
1√
psucc

))
. This implies psucc = Θ

(
9−l
)

and hence the thresholds

αk =

{
Θ
(
9k−m+l

∥∥ΠkΠbAk · · ·A1|ψ0⟩
∥∥2
)
, k = m− l + 1, . . . ,m,

0, k = 1, . . . ,m− l.
(17)

Property (i) provides the theoretical guarantee that the above Tunable VTAA can be translated
into a nested amplitude amplification. To realize this, one would naively perform amplitude estima-
tion to determine all thresholds αk to a constant multiplicative accuracy, which introduces polylog-
arithmic overhead and ruins the optimal scaling of initial state preparation. But this is unnecessary

overkill. Suppose we have adjusted the constant factor so that αk = c29k−m+l
∥∥ΠkΠbAk · · ·A1|ψ0⟩

∥∥2
for some c ⪆ 1 (say c = 1.001). Then at the first nontrivial stage k = m− l+1, we would compare∥∥Πm−l+1ΠbAm−l+1 · · ·A1|ψ0⟩

∥∥ with 1
3

√
αm−l+1 = c

∥∥Πm−l+1ΠbAm−l+1 · · ·A1|ψ0⟩
∥∥. We find that

our current amplitude falls just short of the threshold, concluding that we need 2rm−l+1 + 1 = 3
steps of amplitude amplification. After this stage, we have amplified the amplitude by 3 up to a loss

factor. At the next stage k = m− l + 2, our current amplitude
∥∥∥Πm−l+2ΠbAm−l+2Ãm−l+1|ψ0⟩

∥∥∥ ⪅

3
∥∥Πm−l+2ΠbAm−l+2 · · ·A1|ψ0⟩

∥∥ is slightly below 1
3

√
αm−l+2 = c3

∥∥Πm−l+2ΠbAm−l+2 · · ·A1|ψ0⟩
∥∥,

so we conclude once more we need 2rm−l+2 + 1 = 3 steps of amplitude amplification, which boosts
the amplitude again by 3 up to a loss factor. Proceeding in this way, we obtain the following simple
amplification schedule

2rk + 1 =

{
3, k = m− l + 1, . . . ,m,

1, k = 1, . . . ,m− l.
(18)

Note again that this deterministic schedule is derived entirely from the definition of Tunable VTAA,
and the derivation requires no amplitude estimation. The amplification schedule Eq. (18) is remi-
niscent of another one used in the recent study of quantum search [3] (see also [14, 27, 46]). This is
not a coincidence. For the quantum search algorithm of [3], the target cost function is the ℓ2-norm
of input cost, which grows exponentially in the stage number like ∼ 3k. Following an analysis
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similar to above, one can show that Tunable VTAA reproduces the search algorithm developed
in [3].

With the deterministic schedule, the GPE algorithm is invoked at most m3l times. To achieve
accuracy ϵ, we choose ϵgpe =

ϵ
m3l

, giving a VTAA algorithm with complexity O
(

1√
psucc

Cost(Ob)

+ κ log
(

1√
psucc

)
log
(

log(κ)√
psuccϵ

)
Cost(OA)

)
. By using a more complicated error schedule in the first

m − l stages and projecting error onto the potentially good subspaces, we further improve this
result to

O


 1√

psucc
Cost(Ob) + κ log

(
1√
psucc

)
log



log
(

1√
psucc

)

ϵ


Cost(OA)


 . (19)

This achieves an optimal cost of initial state preparation with a substantially simplified VTAA
schedule Eq. (18). We summarize this algorithm in Theorem 2 of Section 5 and prove the optimality
in Theorem 3.

Note that our above discussion assumes that we have a constant multiplicative approxima-
tion of

√
psucc, or equivalently, the solution norm

∥∥A−1|b⟩
∥∥. If this information is not available,

then we develop a solution norm estimation algorithm in Theorem 1 that estimates
∥∥A−1|b⟩

∥∥
to a constant multiplicative accuracy, by running VTAA with l = 0, 1, 2, . . . that terminates at

l = Θ
(
log3

(
1√
psucc

))
with high probability. This costs O

(
1√

αpsucc

)
queries to the initial state

preparation oracle with αpsucc a lower bound on the success probability, again achieving the strictly
linear scaling.

1.5 Block preconditioning

As aforementioned, when applying the quantum linear system solvers, we are often in the interme-
diate regime where 1 ≪ 1√

psucc
=

αA−1

∥A−1|b⟩∥ ≪ κ = αAαA−1 . Thus, the cost of querying Ob can be

quite significant even with our optimal scaling algorithm. We now describe the third main contri-
bution, a simple block preconditioning technique, that artifically boosts the amplitude of solution
norm

∥∥A−1|b⟩
∥∥ and thereby reduces the complexity of initial state preparation. In fact, for solving

differential equations and processing eigenvalues, the initial state query cost can even be reduced
close to constant (in the evolution time and degree of the input polynomial). See Section 6 for
further details.

Our block preconditioning technique targets at a subspace containing the initial state. Specifi-
cally, suppose that there is an orthogonal projection Πcond whose image includes the initial state

Πcond|b⟩ = |b⟩. (20)

Then we introduce the scaling operator

S = sΠcond + (I −Πcond) , S−1 =
1

s
Πcond + (I −Πcond) , (21)

where 0 < s < 1 is a scaling parameter that can be tuned for specific applications. Assuming
Πcond is accessible through an oracle reflecting along the image space −Πcond + (I −Πcond) =
I − 2Πcond, we can block encode S with normalization factor 1 through the linear combination
S = 1−s

2 (I − 2Πcond) +
1+s
2 I. This assumption is justified because in all our applications, we

can efficiently implement unitaries Vcond such that V †
cond (I − 2Πcond)Vcond are reflections in the

computational basis. Note it is also possible to make a weaker assumption that a block encoding
of Πcond is available, although this will increase the prefactor in the complexity of our algorithm.
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Application Improvement Preconditioner Previous scaling New scaling

Linear system solver
Theorem 4

Input matrix Initial state κ√
psucc

log
(

1√
psuccϵ

)
κ log

(
1
ϵ

)

Differential equation solver
Theorem 5

Initial state Ancilla state t
∥etA|b⟩∥ log

(
1

∥etA|b⟩∥ϵ

)
log
(
t
ϵ

)
1

∥etA|b⟩∥

Eigenvalue estimator
Theorem 6

Initial state Ancilla state κS
ϵ κS

Eigenvalue transformer
Theorem 7

Initial state Ancilla state
κ2Sn log(n)∥∥∥p( A

αA

)
|ψ⟩

∥∥∥ log
(

κS log(n)∥∥∥p( A
αA

)
|ψ⟩

∥∥∥ϵ
)

κS log(n)∥∥∥p( A
αA

)
|ψ⟩

∥∥∥
Ground state preparator

Theorem 8
Initial state Ancilla state

κ2S
|γ0|δA log2

(
κS
|γ0|ϵ

)
κS
|γ0| log

(
1
δA

log
(
κS
|γ0|ϵ

))

Block-encoded
eigenvalue transformer

Theorem 9
Input matrix Ancilla state

n1.5κ2S∥∥∥p( A
αA

)∥∥∥ log
(

√
nκS∥∥∥p( A
αA

)∥∥∥ϵ
)
log
(
1
ϵ

) nκ2S∥∥∥p( A
αA

)∥∥∥ log
(

κS∥∥∥p( A
αA

)∥∥∥ϵ
)
log
(
1
ϵ

)

Table 2: Summary of applications of the block preconditioning technique. Using the initial ancilla state as
the preconditioner, one can reduce the cost of initial state preparation in linear-system-based differential
equation solvers, ground state preparators and eigenvalue processors, nearly matching or outperforming the
state of the art. By choosing the initial state itself as the preconditioner and applying QSVT, one gets
an extremely simple quantum linear system solver with optimal queries to the coefficient matrix. See the
corresponding theorem statements for definitions of the parameters.

Now instead of Ax = b, we consider the preconditioned linear system SAx = Sb, which yields

the original solution (SA)−1Sb
∥(SA)−1Sb∥ = A−1|b⟩

∥A−1|b⟩∥ when solved exactly. Here, the preconditioned coefficient

matrix can be block encoded as (SA)/αA with the same normalization as before, and the initial
state Sb

∥Sb∥ = |b⟩ also remains the same. However, the solution norm now becomes

∥∥(SA)−1|b⟩
∥∥ =

∥∥A−1S−1|b⟩
∥∥ =

1

s

∥∥A−1|b⟩
∥∥ , (22)

whereas the inverse matrix has a norm bounded by

∥∥(SA)−1
∥∥ =

∥∥A−1S−1
∥∥ =

∥∥∥∥
1

s
A−1Πcond +A−1 (I −Πcond)

∥∥∥∥

≤

√
∥A−1Πcond∥2

s2
+ ∥A−1 (I −Πcond)∥2 ≤

√
∥A−1Πcond∥2

s2 ∥A−1∥2
+ 1

∥∥A−1
∥∥ .

(23)

So the condition number stays the same as long as s = Ω

(
∥A−1Πcond∥

∥A−1∥

)
, but the solution norm

will be artificially boosted by a factor of 1
s thanks to block preconditioning.

Preconditioning is a classical subject in numerical linear algebra, the goal of which is to trans-
form linear system problems to improve their algorithmic solvability. Among the various precondi-
tioning methods, the one closest to our work is the so-called matrix scaling (also known as matrix
balancing or matrix equilibration); see the review article [28] and the references therein. Using that
language, our result can be interpreted as follows. When partitioned with respect to the orthogonal
decomposition Im (Πcond) k Im (I −Πcond), operators A

−1 and S−1 take the form

A−1 =
[
A−1

∣∣
Im(Πcond)

A−1
∣∣
Im(I−Πcond)

]
, S−1 =

[
1
s I|Im(Πcond)

0

0 I|Im(I−Πcond)

]
. (24)

Here, the block A−1
∣∣
Im(Πcond)

is of most interest to us, because it completely determines the action

of A−1 on a subspace containing the initial state |b⟩. The issue is that
∥∥∥A−1

∣∣
Im(Πcond)

∥∥∥≪
∥∥A−1

∥∥ can
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often happen in practice, so we are inverting a coefficient matrix with a large condition number,
while the initial state actually resides in a subspace with a relatively small condition number.

To remedy this issue, we use the scaling matrix to boost the block 1
s

∥∥∥A−1
∣∣
Im(Πcond)

∥∥∥ ≈
∥∥A−1

∥∥
without significantly increasing the overall condition number, leading to faster quantum linear
system solvers; hence the name block preconditioning. It is worth mentioning that preconditioning
has also been explored in previous quantum work such as [16, 49, 56], although their focus is on
constructing preconditioners for linear systems with specific structures, as opposed to the generic
linear system problem considered here.

As an immediate application, let us consider what if we choose the initial state itself as the
preconditioner Πcond = |b⟩⟨b|. Then, the coefficient matrix

SA = (s|b⟩⟨b|+ (I − |b⟩⟨b|))A (25)

can be block encoded with normalization factor αA, using 1 query to OA and 2 queries to Ob and
its inverse. Given a constant multiplicative approximation of

∥∥A−1|b⟩
∥∥, we set

s = Θ

(∥∥A−1|b⟩
∥∥

αA−1

)
= Θ (

√
psucc) . (26)

This implies the scaling of solution norm

∥∥(SA)−1|b⟩
∥∥ =

1

s

∥∥A−1|b⟩
∥∥ = Θ (αA−1) , (27)

and norm bound on the inverse coefficient matrix

∥∥(SA)−1
∥∥ ≤

√
∥A−1|b⟩∥2

s2 ∥A−1∥2
+ 1

∥∥A−1
∥∥ = O (αA−1) . (28)

Therefore, by applying QSVT to the preconditioned problem, we obtain an extremely simple quan-
tum linear system algorithm with complexity

O

(
κ log

(
1

ϵ

)
Cost(Ob) + κ log

(
1

ϵ

)
Cost(OA)

)
. (29)

The result appears to be conceptually even simpler than the recent kernel-reflection method, which
instead solves a padded linear system over an expanded Hilbert space [19]. Of course, one needs to
estimate the solution norm to a constant multiplicative accuracy before running either approach.
This can be achieved using either the method of [19] which makes optimal queries to the coefficient
matrix, or our Tunable VTAA which makes optimal queries to the initial state preparation and
nearly optimal uses of the coefficient matrix.

Observe that the preconditioned coefficient matrix SA can be block encoded with no query
overhead, if we choose the initial ancilla state as the preconditioner. We utilize this observation to
reduce the cost of initial state preparation in differential equation solvers, ground state preparators
and eigenvalue processors, nearly matching or outperforming the state of the art. This refutes the
widely held beliefs that linear-system-based differential equation solvers and eigenvalue estimators
necessarily require more queries to the initial state oracles than their alternatives [4, 20, 60]. Of
independent interest, we also get a block-encoded eigenvalue transformation algorithm with O(n)
scaling in degree of the target polynomial, whereas the best previous result wasO(n1.5). See Table 2
for a summary of applications of the block preconditioning technique.

We summarize in Section 2 preliminaries required to understand our algorithms, and include
in Section 7 a brief recap of the main result and a collection of questions for future work.
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2 Preliminaries

This section contains preliminaries useful for understanding our quantum linear system algorithms
and their applications. We provide common notation and terminology in Section 2.1 to be used
throughout the paper. We then review known results on VTAA in Section 2.2. Unlike prior work,
we introduce an axiomatic formulation of VTAA which is not bonded by any concrete circuit
implementation and offers more flexibility. We refer the reader to [39, Section 2.4] for further
preliminaries about the block encoding framework, within which our algorithms are developed.

2.1 Notation and terminology

We use lowercase Latin and Greek alphabets to denote scalars, vectors and functions. For instance,
we often use ϵ for the accuracy of algorithm, κ for a known upper bound on the condition number,
psucc for success probability of the input algorithm of VTAA or the probability of directly inverting
the input matrix with block encoding, m for the number of VTAA stages, and r for the number
of amplification steps/schedules. We also represent known upper/lower bounds of quantities or
amplification threshold values using α, writing αA ≥ ∥A∥ for a known upper bound on the spectral
norm of input matrix A for block encoding, αA−1 ≥

∥∥A−1
∥∥ for a known upper bound on the norm

of A−1 with κ = αAαA−1 , αpsucc ≤ psucc a known lower bound on the success probability, and
αj amplification thresholds associated with a Tunable VTAA. We employ standard notations for
number sets, using Z for integers (Z≥0 for nonnegative integers), R for real numbers, and C for
complex numbers.

We user uppercase Latin and Greek alphabets to represent matrices and operators. For example,
we write A for the coefficient matrix of a linear system, OA for its block encoding unitary, Ob for
the unitary preparing the initial state, Aj (j = 1, . . . ,m) for the input algorithms of VTAA, Π
for an orthogonal projection (Π = I − Π for its complement), S for the scaling operator used for
preconditioning, and I,X, Y, Z for the identity and Pauli matrices. We use ∥A∥ to denote the
spectral norm of A, i.e., its largest singular value. For a matrix A and scalar αA ≥ 0, we say A/αA
can be block encoded if there exists an isometry G and unitary U such that A

αA
= G†UG. Such

a block encoding is mathematically feasible if and only if αA ≥ ∥A∥, but additional normalization
factors may be introduced when the block encoding is implemented by a quantum circuit.

We use boldface symbols to denote functions and operations having specific meanings. We write
Cost(·) for the (query) cost of implementing an operator, Ceil(·)/Floor(·) for the nearest integer
rounded up/down, Ker(·)/Im(·) for the kernel/image of a linear operator, P(·) for the probability
of an event, andTj(·)/Uj(·) for Chebyshev polynomials of the first/second kind (writing its rescaled

version as T̃j(·) with T̃0 = 1
2). If Π is an orthogonal projection, Im(Π) k Im(Π) is an orthogonal

decomposition of the underlying space and we may use it to bound the spectral norm of an operator
as

∥A∥ =
√
∥AA†∥ ≤

√
∥AΠA†∥+

∥∥AΠA†
∥∥ =

√
∥AΠ∥2 +

∥∥AΠ
∥∥2. (30)

We write O(·) to mean asymptotically less than, Ω(·) to mean asymptotically more than, and Θ(·)
to represent quantities having the same asymptotic scaling. We let a summation be zero and a
product by one if their lower limits exceed upper limits.

In analyzing the performance of Tunable VTAA, we will need to evaluate

∥β∥p =




n∑

j=1

|βj |p



1
p

, p ∈ (0,+∞] (31)
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for vectors
[
β1 · · · βn

]
∈ Cn. When 1 ≤ p ≤ ∞, ∥·∥p is the ℓp-norm and its properties are

summarized in standard references such as [26, Chapter 5]. In particular, the case p = 2 corresponds
to the Euclidean norm and we may drop the subscript since it is the same as spectral norm when
we equate vectors with column matrices. However if 0 < p < 1, ∥·∥p is no longer a vector norm
and its properties may be less familiar. In this case, ∥·∥p is known as a quasinorm [17, 44], which
satisfies the following defining properties.

(i) ∥β∥p ≥ 0 for all β ∈ Cn, with ∥β∥p = 0 if and only if β = 0.

(ii) ∥cβ∥p = |c| ∥β∥p for all β ∈ Cn and c ∈ C.

(iii) ∥β + γ∥p ≤ 2
1
p
−1
(
∥β∥p + ∥γ∥p

)
for all β, γ ∈ Cn.

The factor 2
1
p
−1

in Property (iii) is the best one can get for a modified triangle inequality ∥β + γ∥p ≤
c
(
∥β∥p + ∥γ∥p

)
with some universal constant c ≥ 0 for all β, γ ∈ Cn. In fact, if β and γ are entry-

wise nonnegative, it holds the reverse Minkowski’s inequality ∥β + γ∥p ≥ ∥β∥p+∥γ∥p. Additionally,
when 0 < p < q ≤ ∞,

∥β∥q ≤ ∥β∥p ≤ n
1
p
− 1
q ∥β∥q , (32)

and n
1
p
− 1
q is again the best constant one can hope for.

We use the Dirac notation |ψ⟩ for a vector only when it is normalized with respect to the
Euclidean norm ∥|ψ⟩∥ = 1. For general nonzero vectors ψ and ϕ, we define

ψ ∝ ϕ ⇔ ψ

∥ψ∥ =
ϕ

∥ϕ∥ ⇔ ψ = cϕ ∃c > 0. (33)

That is, ψ is proportional to ϕ if and only if they agree up to a positive rescaling, whereas |ψ⟩ ∝
|ϕ⟩ ⇔ |ψ⟩ = |ϕ⟩ holds for unit vectors. It can be verified that proportionality is reflexive, symmetric,
and transitive. Moreover,

ψ ∝ ϕ ⇒ Bψ ∝ Bϕ (34)

for an operator B whenever the composition makes sense.
Finally, we say u > 0 is a c-multiplicative approximation of v > 0 if

1

c
≤ u

v
≤ c (35)

for some c ≥ 1. It is apparent that this relation is reflexive, symmetric, and invariant under re-
ciprocal: any u > 0 is a 1-multiplicative approximation of itself; if u > 0 is a c-multiplicative
approximation of v > 0, then v is a c-multiplicative approximation of u, and 1

u is a c-multiplicative
approximation of 1

v . Moreover, if u1, u2 are c1-, c2-multiplicative approximations of v1, v2 respec-
tively, their product u1u2 is a (c1c2)-multiplicative approximation of v1v2. When analyzing VTAA,
we often consider the case where c is constant. But there may also be scenarios where we want
1− ϵ ≤ u

v ≤ 1
1−ϵ for some small 0 < ϵ < 1. This then leads to a simple product rule:

1− ϵ1 ≤
u1
v1

≤ 1

1− ϵ1
, 1− ϵ2 ≤

u2
v2

≤ 1

1− ϵ2
⇒ 1− (ϵ1 + ϵ2) ≤

u1u2
v1v2

≤ 1

1− (ϵ1 + ϵ2)
. (36)

By a possible rescaling of ϵ, we can also consider alternative definitions such as 1
1+ϵ ≤ u

v ≤ 1 + ϵ
and 1− ϵ ≤ u

v ≤ 1 + ϵ, which relate more closely to additive approximations as

1− ϵ ≤ u

v
≤ 1 + ϵ ⇔ |u− v| ≤ vϵ. (37)
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2.2 Variable time amplitude amplification

We now formally introduce variable time amplitude amplification, and review known results about
this framework [2, 12], using an axiomatic formulation not bonded by its circuit implementation.
We assume throughout this subsection that an underlying Hilbert space H has been fixed on which
all operators act.

Definition 1 (Variable time algorithm and amplification). A variable time quantum algorithm is

a 3-tuple
(
{Πj}mj=0,Πb, {Aj}mj=0

)
satisfying the following axioms.

(i) Πj are orthogonal projections partially ordered as 0 = Π0 ≤ Π1 ≤ · · · ≤ Πm = I.

(ii) Πb is an orthogonal projection commuting with all Πj: ΠbΠj = ΠjΠb for j = 0, . . . ,m.

(iii) Aj are unitaries such that AjΠj−1 = Πj−1 for all j = 1, . . . ,m, and A0 = I.

A variable time amplification algorithm is a 5-tuple
(
{Πj}mj=0,Πb, {Aj}mj=0, {Ãj}mj=0, |ψ0⟩

)
that ad-

ditionally satisfies

(iv) Ãj are unitaries such that
ΠjΠbÃj |ψ0⟩
∥ΠjΠbÃj |ψ0⟩∥ =

ΠjΠbAjÃj−1|ψ0⟩
∥ΠjΠbAjÃj−1|ψ0⟩∥ for all j = 1, . . . ,m, and Ã0 = I.

The above definition deserves a few remarks. We call Πj (j = 0, . . . ,m) the clock projections.
As Πj are Hermitian, they can be partially ordered according to the positive semidefinitess, and
Axiom (i) requires that Πj ≤ Πj+1 hold true for all j = 0, . . . ,m− 1. In Appendix A.1, we present
a number of equivalent characterizations of the partial ordering Πj ≤ Πj+1, showing in particular
that Πj = Πj+1Πj = ΠjΠj+1. As an immediate corollary, we have

Πj = ΠkΠj = ΠjΠk, 0 ≤ j ≤ k ≤ m (38)

and Πk−Πj are themselves orthogonal projections. In a variable time quantum algorithm, Im(Πj)
represents the part of space in which the algorithm stops running before or at stage j. The
space Im(Πj) monotonically increases with k, echoing the fact that more branches of the quantum
algorithm will halt as the computation proceeds toward completion.

We call Πb and its complement Πb = I−Πb the flag projections. In the context of variable time
amplification, Im(Πb) is the part of space where the desired output state resides, corresponding to
the success of algorithm. Axiom (ii) requires that Πb commutes with all Πj , so these projections may
be simultaneously measured in a quantum computation. In Appendix A.2, we tabulate the meaning
of different outcomes from the simultaneous measurement of {Πj −Πj−1}mj=1 and {Πb, I −Πb}. Of

particular interest is the outcome corresponding to ΠjΠb, which represents that the computation can
potentially succeed at stage j. These potentially good projections form a monotonically decreasing
sequence

I = Π0Πb ≥ Π1Πb ≥ · · · ≥ ΠmΠb = Πb, (39)

and they satisfy
ΠkΠb = ΠjΠb ·ΠkΠb = ΠkΠb ·ΠjΠb, 0 ≤ j ≤ k ≤ m. (40)

We call Aj the input algorithms, which act trivially on Im(Πj−1) as is required by Axiom (iii). In
Appendix A.3, we present a number of equivalent characterizations of the property AjΠj−1 = Πj−1,
finding that Aj = Πj−1+Πj−1AjΠj−1 are necessarily controlled unitaries controlled by Πj−1. This
implies

AjΠl = Πl = ΠlAj , AjΠlΠb = ΠlΠbAj , 0 ≤ l < j ≤ m. (41)
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As an immediate consequence of this property, we have that the potentially good amplitudes
∥∥ΠjΠbAj · · ·A1|ψ0⟩

∥∥ =
∥∥ΠjΠbAm · · ·A1|ψ0⟩

∥∥ , j = 0, . . . ,m (42)

form a monotonic sequence decreasing from 1 to
√
psucc:

1 =
∥∥Π0Πb|ψ0⟩

∥∥ ≥
∥∥Π1ΠbA1|ψ0⟩

∥∥ ≥ · · · ≥
∥∥ΠmΠbAm · · ·A1|ψ0⟩

∥∥ =
∥∥ΠbAm · · ·A1|ψ0⟩

∥∥ =
√
psucc.
(43)

Finally, we call Ãj the amplified algorithms. At each stage j, we would like the amplification
to preserve the part of state potentially leading to success, while suppressing the part that has
already resulted in failure. This requirement is captured by Axiom (iv), which can be succinctly
represented as ΠjΠbÃj |ψ0⟩ ∝ ΠjΠbAjÃj−1|ψ0⟩. We then prove in Appendix A.4 that

∥∥∥ΠhΠbAh · · ·Aj+1Ãj |ψ0⟩
∥∥∥

∥∥∥ΠkΠbAk · · ·Aj+1Ãj |ψ0⟩
∥∥∥
=

∥∥∥ΠhΠbAh · · ·Al+1Ãl|ψ0⟩
∥∥∥

∥∥∥ΠkΠbAk · · ·Al+1Ãl|ψ0⟩
∥∥∥
, 0 ≤ l, j ≤ k, h ≤ m. (44)

That is, the transition of potentially good amplitudes remains the same, regardless of whether we
consider the pre- or post-amplified algorithms.

Until this point, we have not specified the amplification algorithms Ãj other than the require-
ment that they should preserve the potentially good outcomes. In what follows, we consider the
case where Ãj are constructed by the standard amplitude amplification toward the potentially good

subspaces Ãj =
(
−
(
I − 2AjÃj−1|ψ0⟩⟨ψ0|Ã†

j−1A
†
j

) (
I − 2ΠjΠb

))rj
AjÃj−1. Here, rj are nonnega-

tive integers and we call 2rj + 1 amplification schedules or amplification step numbers. The query

complexity of Ãj then satisfies the recurrence

Cost
(
Ãj |ψ0⟩

)
= (2rj + 1)

(
Cost(Aj) +Cost

(
Ãj−1|ψ0⟩

))
, j = 1, . . . ,m. (45)

For a given choice of rj , we can unwrap the recursion to obtain a variable time nested amplitude

amplification Ãm, which has a query cost of

Cost
(
Ãm|ψ0⟩

)
= Cost(|ψ0⟩)

m∏

k=1

(2rk + 1) +
m∑

j=1

Cost(Aj)
m∏

k=j

(2rk + 1). (46)

Formally:

Definition 2 (Variable time nested amplitude amplification). A variable time nested amplitude

amplification is a 5-tuple
(
{Πj}mj=0,Πb, {Aj}mj=0, {rj}mj=1, |ψ0⟩

)
that additionally satisfies

(iv′) rj are nonnegative integers for j = 1, . . . ,m, which define

Ãj =

{(
−
(
I − 2AjÃj−1|ψ0⟩⟨ψ0|Ã†

j−1A
†
j

) (
I − 2ΠjΠb

))rj
AjÃj−1, j = 1, . . . ,m,

I, j = 0.
(47)

When (2rj+1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≤ 1, we have (2rj+1) arcsin
(∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥
)
≤ π

2 and

there is no over amplification/overshoot. Consequently, the pre- and post-amplified amplitudes of
stage j are related by the analytic expression

∥∥∥ΠjΠbÃj |ψ0⟩
∥∥∥ = sin

(
(2rj + 1) arcsin

(∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥
))

. (48)
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∥∥Π1ΠbA1|ψ0⟩
∥∥

∥∥∥Π1ΠbÃ1|ψ0⟩
∥∥∥

∥∥∥Π2ΠbA2Ã1|ψ0⟩
∥∥∥

∥∥∥Π2ΠbÃ2|ψ0⟩
∥∥∥

∥∥∥Πm−1ΠbAm−1Ãm−2|ψ0⟩
∥∥∥

∥∥∥Πm−1ΠbÃm−1|ψ0⟩
∥∥∥

∥∥∥ΠmΠbAmÃm−1|ψ0⟩
∥∥∥

∥∥∥ΠmΠbÃm|ψ0⟩
∥∥∥

∥∥Π2ΠbA2A1|ψ0⟩
∥∥

∥∥Πm−1ΠbAm−1 · · ·A1|ψ0⟩
∥∥

∥∥ΠmΠbAm · · ·A1|ψ0⟩
∥∥ =

√
psucc

∥∥Π0Πb|ψ0⟩
∥∥ = 1

sin ((2r1 + 1) arcsin(·))

∥Π2ΠbA2A1|ψ0⟩∥
∥Π1ΠbA1|ψ0⟩∥ × (·)

sin ((2r2 + 1) arcsin(·))
• • •

sin ((2rm−1 + 1) arcsin(·))

∥ΠmΠbAm···A1|ψ0⟩∥
∥Πm−1ΠbAm−1···A1|ψ0⟩∥ × (·)

sin ((2rm + 1) arcsin(·))

∥Π2ΠbA2A1|ψ0⟩∥
∥Π1ΠbA1|ψ0⟩∥ × (·)

• • •

∥ΠmΠbAm···A1|ψ0⟩∥
∥Πm−1ΠbAm−1···A1|ψ0⟩∥ × (·)

∥∥Π1ΠbA1|ψ0⟩
∥∥× (·)

Figure 2: Illustration of the transition of amplitudes in a VTAA/nested amplitude amplification. The flow
of algorithms is represented by arrows, with the input branch colored in red and amplified one in blue.
Assuming there is no over amplification, for any pair of connected nodes, the amplitude from the bottom
node is less than or equal to that from the top node.

Note we have almost amplified the amplitude by 2rj + 1, up to the loss factor

sin
(
(2rj + 1) arcsin

(∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥
))

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥
. (49)

Carrying out this analysis to all the stages, we have the total loss factor

m∏

j=1



sin
(
(2rj + 1) arcsin

(∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥
))

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥


 . (50)

See Figure 2 for an illustration of the amplitude transitions in a nested amplitude amplification.
In Ambainis’ Variable Time Amplitude Amplification (VTAA) [2], the schedules are determined

as follows: we choose rj as the smallest nonnegative integer satisfying (2rj+1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≥
1

3
√
m
. This choice of rj necessarily means that (2rj + 1)

∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥ ≤ 1√

m
, and one can

show via an induction that there is no over amplification at all stages. On the other hand, we have
∑m

j=1(2rj+1)2
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥
2
≤ 1, which yields

∏m
j=1

(
sin((2rj+1) arcsin(∥ΠjΠbAjÃj−1|ψ0⟩∥))

(2rj+1)∥ΠjΠbAjÃj−1|ψ0⟩∥

)
=

Ω(1). The conclusion is that Ambainis’ VTAA is a nested amplitude amplification with no overshoot
and constant loss factor. Note our above definition of rj uses the precise value of the amplitude∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥. This is only for presentational purpose. In practice, one would estimate it to

a constant muliplicative precision by running VTAA up to stage j − 1 [12, Theorem 23]. Then one
compares the upper bound with the threshold value to determine the amplification schedule, which
enlarges the loss factor by only a constant amount.

Using the state-of-the-art analysis, VTAA has the query complexity

O




√
m√
psucc

Cost (|ψ0⟩) +
√
m√
psucc

m∑

j=1

∥∥Πj−1ΠbAj−1 · · ·A1|ψ0⟩
∥∥Cost (Aj)


 . (51)
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Here, the cost of input algorithms has the ℓ1-norm scaling with an additional
√
m factor, which

can be relaxed to the ℓ2-norm scaling introducing another
√
m factor. This complexity analysis

can be further improved—we present the tightened analysis in Section 3 for Tunable VTAA which
subsumes Ambainis’ scheme as a special case. In any event, the above complexity is achievable
only when all the amplification schedules are pre-determined during compilation. Otherwise, we
need to compile the algorithm by frequently invoking amplitude estimations. This makes VTAA
substantially more complicated, and introduces polylogarithmic factors to the cost of both input
algorithms and the initial state preparation.

3 Tunable variable time amplitude amplification

We now introduce Tunable Variable Time Amplitude Amplification (Tunable VTAA) and analyze
its performance. Specifically, we formally define Tunable VTAA in Section 3.1 and show its equiv-
alence to a generic nested amplitude amplification algorithm reflecting toward the potentially good
subspaces. We then analyze the query complexity of Tunable VTAA in Section 3.2. We present an
optimized amplification schedule in Section 3.3 under which Tunable VTAA has the lowest possible
query cost.

For presentation purpose, we assume that values of all norms in our discussion are known a
prior. We will comment on how this assumption can be relaxed at the end of Section 3.3.

3.1 Definition and universal property

We begin with the formal definition of Tunable VTAA.

Definition 3 (Tunable variable time amplitude amplification). A tunable variable time amplitude

amplification is a 5-tuple
(
{Πj}mj=0,Πb, {Aj}mj=0, {αj}mj=0, |ψ0⟩

)
that additionally satisfies

(iv′′) αj are nonnegative real numbers for j = 1, . . . ,m, and α0 = 1, which define

rj = min

{
r ∈ Z≥0

∣∣ (2r + 1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≥ 1

3

√
αj

}
, j = 1, . . . ,m

Ãj =

{(
−
(
I − 2AjÃj−1|ψ0⟩⟨ψ0|Ã†

j−1A
†
j

) (
I − 2ΠjΠb

))rj
AjÃj−1, j = 1, . . . ,m,

I, j = 0.

(52)

Compared with the standard VTAA, we have introduced the amplification thresholds αj in
Tunable VTAA. These thresholds determine the amplification schedules and amplified algorithms
via the specified recurrence. That is, the schedule rj is the smallest nonnegative integer satisfying

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≥ 1
3

√
αj ; it has the following closed-form representation

rj = max



Ceil




√
αj

6
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥
− 1

2


 , 0



 . (53)

When it happens
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≥ 1
3

√
αj , we choose rj = 0. In this case, we have a trivial step

Ãj = AjÃj−1. Otherwise if 0 <
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ < 1
3

√
αj , we have a nontrivial amplification

with rj ≥ 1. Ãj is then obtained by performing 2rj + 1 steps of amplitude amplifications toward
the potentially good subspace Im

(
ΠjΠb

)
.
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Apparently, Tunable VTAA offers more flexibility than the VTAA of Ambainis, due to the
introduction of tunable threshold values αj that can be optimized for different input algorithms
and initial states, though it may not be immediately clear how much more powerful this modification
is. In the following, we show that Tunable VTAA is universal in the sense that it is equivalent to
a generic nested amplitude amplification with no overshoot and constant loss factor. This provides
a compelling reason for us to examine Tunable VTAA in greater detail.

In the forward direction, let us suppose we have a Tunable VTAA with amplification thresholds
0 ≤ αj ≤ 1 for all j = 1, . . . ,m and

∑m
j=1 αj = O(1). Then, in case we have a nontrivial

amplification with rj ≥ 1 and 0 <
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ < 1
3

√
αj ,

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ <


2




√
αj

6
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥
+

1

2


+ 1



∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥

=

√
αj

3
+ 2

∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥

<
√
αj ≤ 1,

(54)

so there is no over amplification. If on the other hand rj = 0, then it trivially holds (2 · 0 +

1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≤ 1. We thus conclude that there is no overshoot in all the stages j =

1, . . . ,m. Now we lower bound the loss factor. Applying Proposition 16 from Appendix B only to
the nontrivial stages,

∏

rj≥1



sin
(
(2rj + 1) arcsin

(∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥
))

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥




≥
∏

rj≥1

(
1− 1

6
(2rj + 1)2

∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥
2
)

≥ exp


∑

rj≥1

ln
(
1− αj

6

)



≥ exp


∑

rj≥1

ln

(
5

6

)
αj


 =

(
5

6

) ∑
rj≥1

αj

≥
(
5

6

)∑m
j=1 αj

= Ω(1),

(55)

where in the third inequality we have used the fact that ln(1− x) ≥ ln(1− c)xc for 0 < x ≤ c < 1.
Hence, the total loss factor of the nested amplitude amplification is at least constant.

Conversely, suppose we have a nested amplitude amplification with schedules rj with no over-

shoot
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≤ 1
3(2rj+1) , and constant total loss factor

∏m
j=1

∥ΠjΠbÃj |ψ0⟩∥
(2rj+1)∥ΠjΠbAjÃj−1|ψ0⟩∥ =

Ω(1). Then, let us choose the following thresholds

αj =




9(2rj + 1)2

∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥
2
, rj ≥ 1,

0, rj = 0.
(56)

Clearly, αj ≤ 1 which follows from the no overshoot condition. It is also verifiable that Tunable
VTAA with thresholds αj implements exactly a nested amplitude amplification with schedules rj .
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Moreover, we upper bound the loss factor by applying Proposition 16 to all the nontrivial stages

∏

rj≥1



sin
(
(2rj + 1) arcsin

(∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥
))

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥




≤
∏

rj≥1

(
1− 4π − 8

π3
(2rj + 1)2

∥∥∥ΠjΠbAjÃj−1|ψ0⟩
∥∥∥
2
)

= exp


∑

rj≥1

ln

(
1− 4π − 8

9π3
αj

)


≤ exp


−

∑

rj≥1

4π − 8

9π3
αj


 =

1
(
exp

(
4π−8
9π3

))∑
rj≥1 αj

,

(57)

where in the second inequality we use the fact that ln(1 − x) ≤ −x for x < 1. The assumption
that the total loss factor is constant then implies that

∑m
j=1 αj =

∑
rj≥1 αj = O(1). We have thus

established:

Proposition 4 (Universality of Tunable VTAA). The following correspondence holds between Tun-
able VTAA and variable time nested amplitude amplification.

(i) A Tunable VTAA
(
{Πj}mj=0,Πb, {Aj}mj=0, {αj}mj=0, |ψ0⟩

)
according to Definition 3 where αj ≤

1 and
∑m

j=1 αj = O(1), is a variable time nested amplitude amplification according to Defi-

nition 2 where
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≤ 1
2rj+1 and

∏m
j=1

∥ΠjΠbÃj |ψ0⟩∥
(2rj+1)∥ΠjΠbAjÃj−1|ψ0⟩∥ = Ω(1).

(ii) A variable time nested amplitude amplification
(
{Πj}mj=0,Πb, {Aj}mj=0, {rj}mj=1, |ψ0⟩

)
accord-

ing to Definition 2 where
∥∥∥ΠjΠbAjÃj−1|ψ0⟩

∥∥∥ ≤ 1
3(2rj+1) and

∏m
j=1

∥ΠjΠbÃj |ψ0⟩∥
(2rj+1)∥ΠjΠbAjÃj−1|ψ0⟩∥ =

Ω(1), is some Tunable VTAA according to Definition 3 where αj ≤ 1 and
∑m

j=1 αj = O(1).

3.2 Query complexity

We now analyze the performance of Tunable VTAA, taking into account the fact that not all stages
have nontrivial amplitude amplifications.

Specifically, suppose there are nontrivial amplifications at stages 1 ≤ s1 ≤ · · · ≤ sl ≤ m, with
the corresponding amplification step numbers rs1 , . . . , rsl ≥ 1. Then, the cost of a nested amplitude
amplification algorithm previously stated in Eq. (46) should be revised to

Cost(Ãm|ψ0⟩) = Cost(|ψ0⟩)
l∏

u=1

(2rsu + 1) +

l+1∑

v=1

Cost(Asv · · ·Asv−1+1)

l∏

u=v

(2rsu + 1), (58)

where we adopt the convention that s0 = 0, sl+1 = m+ 1 and Am+1 = I. That is, the query cost
is multiplied by 2rsu + 1 only at the l nontrivial stages, and we merge the cost of input algorithms
Cost(Ak) for k = sv−1 + 1, . . . , sv, associated with the same query product

∏l
u=v(2rsu + 1).
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Let us consider a general query product from stage sv to sw and re-express it as

w∏

u=v

(2rsu + 1) =

sw∏

k=sv

(2rk + 1)

=

sw∏

k=sv


 1

∥ΠkΠbÃk|ψ0⟩∥
(2rk+1)∥ΠkΠbAkÃk−1|ψ0⟩∥




sw∏

k=sv




∥∥∥ΠkΠbÃk|ψ0⟩
∥∥∥

∥∥∥ΠkΠbAkÃk−1|ψ0⟩
∥∥∥




=

sw∏

k=sv


 1

∥ΠkΠbÃk|ψ0⟩∥
(2rk+1)∥ΠkΠbAkÃk−1|ψ0⟩∥




∥∥∥ΠswΠbÃsw |ψ0⟩
∥∥∥

∥∥∥Πsv−1ΠbÃsv−1|ψ0⟩
∥∥∥

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥

∥∥ΠswΠbAsw · · ·A1|ψ0⟩
∥∥

=
w∏

u=v


 1

∥ΠsuΠbÃsu |ψ0⟩∥
(2rsu+1)∥ΠsuΠbAsu Ãsu−1|ψ0⟩∥




∥∥∥ΠswΠbÃsw |ψ0⟩
∥∥∥

∥∥∥Πsv−1ΠbÃsv−1 |ψ0⟩
∥∥∥

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥

∥∥ΠswΠbAsw · · ·A1|ψ0⟩
∥∥ .

(59)

Here, the first equality uses the observation that for sv ≤ k ≤ sw, either we have a nontrivial stage
with k = su for v ≤ u ≤ w, or we have a trivial stage with rk = 0. The second equality is a direct
rewriting. The third equality can be reasoned using Eq. (44) in a similar way as [12, Lemma 16]:

sw∏

k=sv




∥∥∥ΠkΠbÃk|ψ0⟩
∥∥∥

∥∥∥ΠkΠbAkÃk−1|ψ0⟩
∥∥∥


 =

sw∏

k=sv




∥∥∥ΠkΠbÃk|ψ0⟩
∥∥∥

∥∥∥Πk−1ΠbÃk−1|ψ0⟩
∥∥∥

∥∥∥Πk−1ΠbÃk−1|ψ0⟩
∥∥∥

∥∥∥ΠkΠbAkÃk−1|ψ0⟩
∥∥∥




=

sw∏

k=sv




∥∥∥ΠkΠbÃk|ψ0⟩
∥∥∥

∥∥∥Πk−1ΠbÃk−1|ψ0⟩
∥∥∥

∥∥Πk−1ΠbAk−1 · · ·A1|ψ0⟩
∥∥

∥∥ΠkΠbAk · · ·A1|ψ0⟩
∥∥




=

∥∥∥ΠswΠbÃsw |ψ0⟩
∥∥∥

∥∥∥Πsv−1ΠbÃsv−1|ψ0⟩
∥∥∥

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥

∥∥ΠswΠbAsw · · ·A1|ψ0⟩
∥∥ .

(60)

The justification of the last equality requires some more efforts. In the first factor, we have
changed the multiplication variable from k back to u, using again the observation that for sv ≤
k ≤ sw, either we have a nontrivial stage with k = su for v ≤ u ≤ w, or we have a trivial stage

with rk = 0 and loss factor
∥ΠkΠbÃk|ψ0⟩∥

(2rk+1)∥ΠkΠbAkÃk−1|ψ0⟩∥ = 1. Now recall that sv−1 + 1, . . . , sv − 1 are

all trivial stages by definition. Thus, invoking Eq. (44),

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥

∥∥∥Πsv−1ΠbÃsv−1|ψ0⟩
∥∥∥

=

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥

∥∥∥Πsv−1ΠbAsv−1 · · ·Asv−1+1Ãsv−1
|ψ0⟩

∥∥∥
=

∥∥Πsv−1
ΠbAsv−1

· · ·A1|ψ0⟩
∥∥

∥∥∥Πsv−1
ΠbÃsv−1

|ψ0⟩
∥∥∥

.

(61)
This proves the claimed representation of query product. As this representation will be used
multiple times within the paper, let us encapsulate it into a lemma.

Lemma 5 (Representation of query product). Let
(
{Πj}mj=0,Πb, {Aj}mj=0, {rj}mj=1, |ψ0⟩

)
be a vari-

able time nested amplitude amplification according to Definition 2. Suppose that rk ≥ 1 happens
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only at l stages 1 ≤ s1 ≤ · · · ≤ sl ≤ m. Then,

w∏

u=v

(2rsu + 1) =

w∏

u=v


 1

∥ΠsuΠbÃsu |ψ0⟩∥
(2rsu+1)∥ΠsuΠbAsu Ãsu−1|ψ0⟩∥




∥∥∥ΠswΠbÃsw |ψ0⟩
∥∥∥

∥∥∥Πsv−1
ΠbÃsv−1

|ψ0⟩
∥∥∥

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥

∥∥ΠswΠbAsw · · ·A1|ψ0⟩
∥∥

(62)
for 1 ≤ v ≤ w ≤ l, under the convention that s0 = 0.

We now apply this representation to the query products in Eq. (58), all of which end with w = l.
By definition, sl is the last nontrivial stage so sl + 1, . . . ,m are all trivial. Invoking Eq. (44) once
more,

∥∥ΠslΠbAsl · · ·A1|ψ0⟩
∥∥

∥∥∥ΠslΠbÃsl |ψ0⟩
∥∥∥

=

∥∥ΠmΠbAm · · ·A1|ψ0⟩
∥∥

∥∥∥ΠmΠbAm · · ·Asl+1Ãsl |ψ0⟩
∥∥∥
=

∥∥ΠmΠbAm · · ·A1|ψ0⟩
∥∥

∥∥∥ΠmΠbÃm|ψ0⟩
∥∥∥

, (63)

giving

l∏

u=v

(2rsu + 1) =

l∏

u=v


 1

∥ΠsuΠbÃsu |ψ0⟩∥
(2rsu+1)∥ΠsuΠbAsu Ãsu−1|ψ0⟩∥




∥∥∥ΠmΠbÃm|ψ0⟩
∥∥∥

∥∥∥Πsv−1
ΠbÃsv−1

|ψ0⟩
∥∥∥

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥

∥∥ΠmΠbAm · · ·A1|ψ0⟩
∥∥ .

(64)

To proceed, note that the first factor is the inverse loss factor, which can be bounded by
(
6
5

)∑m
j=1 αj .

Then, we have the amplitude of post-amplified algorithm trivially bounded by
∥∥∥ΠmΠbÃm|ψ0⟩

∥∥∥ ≤ 1.

In practice, we would also adjust the last stage of VTAA so that the amplitude is at least constant.

Next,
∥∥ΠmΠbAm · · ·A1|ψ0⟩

∥∥ =
√
psucc by definition. We now lower bound

∥∥∥Πsv−1ΠbÃsv−1 |ψ0⟩
∥∥∥:

∥∥∥Πsv−1ΠbÃsv−1 |ψ0⟩
∥∥∥ = sin

(
(2rsv−1 + 1) arcsin

(∥∥∥Πsv−1ΠbAsv−1Ãsv−1−1|ψ0⟩
∥∥∥
))

≥
(
5

6

)αsv−1

(2rsv−1 + 1)
∥∥∥Πsv−1ΠbAsv−1Ãsv−1−1|ψ0⟩

∥∥∥

= Ω
(√
αsv−1

)
.

(65)

This analysis holds for all query products starting at v = 1, . . . , l. In particular, for the cost of
initial state preparation, we have v = 1, α0 = 1 and ∥|ψ0⟩∥ = 1. Altogether, this gives the query
complexity of Tunable VTAA

Cost(Ãm|ψ0⟩) = O

(
1√
psucc

Cost(As1 · · ·A1|ψ0⟩)

+
1√
psucc

l+1∑

v=2

1
√
αsv−1

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)
)
.

(66)
Note that the cost of VTAA would remain the same if we were to pre-merge the input algorithms

Asv · · ·Asv−1+1 during compilation, resulting in a (l + 1)-stage algorithm. We now claim that

l = O
(
log
(

1√
psucc

))
. Indeed, this follows from the observation that

3l ≤
l∏

u=1

(2rsu + 1) ≤
(
6

5

)∑m
j=1 αj 1√

psucc
= O

(
1√
psucc

)
⇒ l = O

(
log3

(
1√
psucc

))
. (67)
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Therefore, in the interesting regime where log
(

1√
psucc

)
≪ m, majority of the algorithms can be

pre-merged yielding a significantly simplified VTAA.

3.3 l 2
3
-quasinorm scaling

Having established the universal property and query complexity of Tunable VTAA, we now explore
its limitation. In particular, we will show that complexity of Tunable VTAA can be optimized to
scale with l 2

3
-quasinorm of the input cost.

To this end, we note that the query cost of initial state preparation and algorithm As1 · · ·A1

has the scaling O
(

1√
psucc

)
independent of the amplification schedules, so it suffices to optimize

query complexity of the remaining input algorithms. Up to a rescaling, this reduces to solving the
following problem:

minimize
l+1∑

v=2

1
√
αsv−1

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)

subject to
l+1∑

v=2

αsv−1 = 1,

αsv−1 > 0, v = 2, . . . , l + 1.

(68)

This optimization problem can be readily solved by the weighted mean inequality. Specifically,
given positive real numbers {wv}lv=1 and {xv}lv=1, the inequality asserts that the weighted harmonic
mean is always upper bounded by the weighted quadratic mean [52, Problem 8.3]:

l∑
v=1

wv

l∑
v=1

wv
1
xv

≤

√√√√√√√√

l∑
v=1

wvx2v

l∑
v=1

wv

⇔
l∑

v=1

wv
1

xv
≥

(
l∑

v=1
wv

) 3
2

√
l∑

v=1
wvx2v

(69)

with equality if and only if x1 = · · · = xl. Specialized to our problem, let us choose

wv−1 =
(∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩

∥∥Cost
(
Asv · · ·Asv−1+1

)) 2
3 ,

xv−1 =
√
αsv−1

(∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

))− 1
3 ,

(70)

for v = 2, . . . , l + 1. Then, the weighted mean inequality implies that

l+1∑

v=2

1
√
αsv−1

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)

≥
(
l+1∑

v=2

(∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)) 2
3

) 3
2

(71)

with the lower bound attained when

αsv−1 ∝
(∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩

∥∥Cost
(
Asv · · ·Asv−1+1

)) 2
3 . (72)

We have thus established:
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Proposition 6 (Query complexity of Tunable VTAA). Let
(
{Πj}mj=0,Πb, {Aj}mj=0, {αj}mj=0, |ψ0⟩

)

be a Tunable VTAA according to Definition 3. Assume that the threshold values satisfy 0 ≤ αj ≤ 1
and

∑m
j=1 αj = O(1). Then,

(i) Nontrivial amplifications happen only at l stages 1 ≤ s1 ≤ · · · ≤ sl ≤ m, where

l = O

(
log3

(
1√
psucc

))
. (73)

Under the convention that sl+1 = m+1 and Am+1 = I, Tunable VTAA has query complexity

Cost(Ãm|ψ0⟩) = O

(
1√
psucc

Cost(As1 · · ·A1|ψ0⟩)

+
1√
psucc

l+1∑

v=2

1
√
αsv−1

∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)
)
.

(74)

(ii) Pre-merging trivial stages and using thresholds

αsv−1 ∝
(∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩

∥∥Cost
(
Asv · · ·Asv−1+1

)) 2
3 , (75)

the complexity of Tunable VTAA can be minimized to attain the ℓ 2
3
-quasinorm scaling

Cost(Ãm|ψ0⟩) = O

(
1√
psucc

Cost(As1 · · ·A1|ψ0⟩)

+
1√
psucc

(
l+1∑

v=2

(∥∥Πsv−1ΠbAsv−1 · · ·A1|ψ0⟩
∥∥Cost

(
Asv · · ·Asv−1+1

)) 2
3

) 3
2
)
.

(76)

In our above discussion, we have used precise values of all the norms involved to simplify our
presentation, but they can be replaced by their constant multiplicative approximators without
affecting the asymptotic analysis. If this prior knowledge is not available, one could perform
nested amplitude estimations like in [2, 12], introducing logarithmic overhead and substantially
complicating the structure of algorithm. However, the advantage of using Tunable VTAA is that
this nested amplitude estimation may be completely avoided if we choose the threshold values
analytically. We will demonstrate this feature in Section 4 for solving the quantum linear system
problem.

4 Discretized inverse state

In this section, we introduce the discretized inverse state for solving the quantum linear system
problem, which can be efficiently prepared by Tunable VTAA. We begin with its construction in
Section 4.1 by performing Gapped Phase Estimation (GPE) on quantum walk, taking special care of
the issue that eigenphases of the walk operator are split into two branches with opposite +/- signs.
We then present a deterministic amplification schedule in Section 4.2 that significantly simplifies
the structure of VTAA.

To further reduce the query complexity, we present an improved analysis of VTAA in Section 4.3
by projecting error onto the potentially good subspaces. Finally, we develop a simple solution norm
estimation algorithm in Section 4.4 to estimate psucc when a constant multiplicative approximation
of it is unavailable a prior.
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4.1 Gapped phase estimation with branch marking

In the quantum linear system problem, the coefficient matrix is block encoded by oracle OA as
A/αA with normalization factor αA ≥ ∥A∥, and an upper bound on its inverse αA−1 ≥

∥∥A−1
∥∥ is

known a prior. We now make a few more assumptions to simplify the discussion without affecting
generality. First, we assume that A is Hermitian and OA is a Hermitian unitary; we can always
fulfill this requirement by considering the Hermitian dilation |0⟩⟨1|⊗A+|1⟩⟨0|⊗A† block encoded by

|0⟩⟨1|⊗OA+ |1⟩⟨0|⊗O†
A, with the corresponding initial state |0⟩|b⟩. Second, we assume αA ≥ 2 ∥A∥,

which can be achieved by block encoding a constant factor to artificially increase the normalization
factor. Third, we assume that both αA and αA−1 are integer powers of 3. Again the former can be
satisfied by rescaling the block encoding, whereas the latter can be realized using another bound
at most a constant factor 3 larger.

As an immediate consequence, the upper bound κ = αAαA−1 on the condition number is
also an integer power of 3, and thus the number of VTAA stages m = log3(κ) is an integer.
Moreover, for any eigenvalue λu of A, the block encoded operator A

αA
has an eigenvalue λ

αA
such

that
∣∣∣ λαA

∣∣∣ ∈
[

1
3m , 1

)
.

Our algorithm proceeds by applying quantum signal processing to the quantum walk operator.
Specifically, assume that the coefficient matrix is block encoded as A

αA
= G†OAG for some isometry

G. Then, the quantum walk operator is defined by W =
(
2GG† − I

)
OA. In Appendix C, we give a

self-contained exposition of the qubitization result [38] linking a block encoding to its walk operator.
In particular, we prove the following spectrum correspondence: if the input block encoding has the
spectral decomposition

A =
∑

u

λu|ϕu⟩⟨ϕu|, (77)

then the walk operator has the corresponding spectral decomposition

W =
∑

u

(
e
+i arccos

(
λu
αA

)
|ϕu,+⟩⟨ϕu,+|+ e

−i arccos
(
λu
αA

)
|ϕu,−⟩⟨ϕu,−|

)
(78)

when restricted to Im
(
GG†)+ Im

(
OAGG

†O†
A

)
, where

|ϕu,0⟩ = G|ϕu⟩, |ϕu,1⟩ =
OAG|ϕu⟩ − λuG|ϕu⟩√

1− λ2u
, |ϕu,±⟩ =

|ϕu,0⟩ ± i|ϕu,1⟩√
2

. (79)

Note that we have omitted the degenerate 1-dimensional subspaces in qubitization, because all our

eigenvalues satisfy
∣∣∣ λuαA

∣∣∣ < 1 following the rescaling assumption at the beginning of this subsection.

Now, suppose that the initial state can be expanded in the eigenbasis of A as |b⟩ =∑u γu|ϕu⟩.
We can then apply G and expand it in the eigenbasis of W as

G|b⟩ =
∑

u

γuG|ϕu⟩ =
∑

u

γu|ϕu,0⟩ =
∑

u

γu
|ϕu,+⟩+ |ϕu,−⟩√

2
. (80)

Next, we apply GPE to label the interval to which every eigenvalue belongs. In earlier work [15],
GPE is performed on the time evolution operator eiA, which introduces the overhead of Hamiltonian
simulation. More recent work [13] suggested applying GPE directly on the quantum walk operator
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W . In our language, this would produce an unnormalized state of the form

1√
2

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

((
ζk+1,u,+

3k+1

3m
|k⟩+ ζk,u,+

3k

3m
|k − 1⟩

)
γu|ϕu,+⟩

+

(
ζk+1,u,−

3k+1

3m
|k⟩+ ζk,u,−

3k

3m
|k − 1⟩

)
γu|ϕu,−⟩

)
.

(81)

As the coefficients ζk,u,+ are different from ζk,u,− in general, one finds that the original uniform
superposition of |ϕu,+⟩ and |ϕu,−⟩ is “distorted” by GPE into a non-uniform superposition. More-
over, this distortion on the ± branches of quantum walk is not recorded by any ancilla state, and
so it is not possible to perform amplitude amplification. This then leads to a highly inaccurate
solution state, a critical issue left unattended in [13].

We address this issue by a gadget called branch marking. Up to a controllable error, branch
marking realizes the transformation

|+⟩|ϕu,±⟩ 7→ |±⟩|ϕu,±⟩, (82)

recording information about the signs of eigenphases of the walk operator into an ancilla register.
Given thresholds γ, γρ , we then perform GPE controlled by the branch register to transform

|±⟩|0⟩|ϕu,±⟩ 7→ |±⟩|ξu⟩|ϕu,±⟩, |ξu⟩ = ξu,0|0⟩+ ξu,1|1⟩, (83)

such that

|ξu⟩ ≈





|0⟩, λu
αA

∈ [γ, 1),

i|1⟩, λu
αA

∈
[
−γ
ρ ,

γ
ρ

]
,

−|0⟩, λu
αA

∈ (−1,−γ] ,
(84)

Importantly, the output state |ξu⟩ has no dependence on the specific ± branch of quantum walk,
regardless of whether the original eigenvalue λu is in the passband, stopband or transition band of
GPE—this is the primary purpose of using branch marking.

We now describe a variable time quantum algorithm for preparing the discretized inverse state.
Our algorithm acts on a clock register |j⟩ holding values j = 0, . . . ,m− 1, a two-qubit flag register
with possible states

|good⟩ = |00⟩, |bad⟩ = |10⟩, |cont′d⟩ = |01⟩, (85)

and a system register holding the solution state, ancilla state for block encoding, a single qubit |±⟩
for branch marking, and any additional ancillas consumed by the branch marking and GPE. We
introduce accuracy parameters ϵbm, ϵgpe,j to be specified later. The algorithm is then constructed
as follows.

1. Initialization:

(a) Set the state of clock register to be |0⟩.
(b) Set the state of flag register to be |cont′d⟩.
(c) Apply the branch marking unitary from Proposition 22 to implement the transformation

|+⟩|ϕu,±⟩ 7→ |±⟩|ϕu,±⟩ with accuracy ϵbm.

2. Discretized inversion: for j = 1, . . . ,m− 1,
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(a) Controlled on the clock state |j − 1⟩, flip the second qubit of the flag register and apply
GPE from Proposition 23 with γ = 1

3j
, ρ = 3 and accuracy ϵgpe,j , storing outcome back

to the second qubit of flag register. Up to error ϵgpe,j , this implements the transfor-
mation |cont′d⟩|±⟩|ϕu,±⟩ 7→ (ξj,u,0|good⟩+ ξj,u,1|cont′d⟩) |±⟩|ϕu,±⟩, where ξj,u,1 = 0 if
1
3j

≤
∣∣∣ λuαA

∣∣∣ < 1
2 , and ξj,u,0 = 0 if 0 ≤

∣∣∣ λuαA
∣∣∣ < 1

3j+1 . Note that both ± branches pick up

the same coefficients ξj,u,0 and ξj,u,1 in the outcome state.

(b) Controlled on the state |j − 1⟩, implement the mapping |cont′d⟩ 7→ |cont′d⟩, |good⟩ 7→
3j

3m |good⟩+
√

1− 9j

9m |bad⟩. This can be achieved by applying a Pauli-Y rotation on the

first qubit of flag register, controlled by the second qubit in state |1⟩.
(c) Controlled on the flag state |cont′d⟩, increment the clock state |j⟩ 7→ |j + 1⟩.

3. Finalization:

(a) Controlled on the clock state |m− 1⟩, apply the transformation |cont′d⟩ 7→ |good⟩. This
can be achieved by applying a Pauli-X gate on the second qubit of flag register.

(b) Undo the branch marking by invoking the reversal of Proposition 22.

Let us first confirm that the above is indeed a variable time quantum algorithm in the sense of
Definition 1. To this end, we define the clock projections

Πj =
∑

0≤x≤j−1

|x⟩⟨x| ⊗ (|good⟩⟨good|+ |bad⟩⟨bad|) (86)

for j = 0, . . . ,m. Note that Πm = I holds effectively since the last step of our algorithm always
maps |cont′d⟩ to |good⟩. The flag projection is naturally selected to be

Πb = |bad⟩⟨bad|. (87)

Finally, we have the following input algorithm at stage j (only showing its nontrivial actions):

Cj = |j⟩⟨j − 1| ⊗
∑

u

ξj,u,1|cont′d⟩⟨cont′d| ⊗ |±, ϕu,±⟩⟨±, ϕu,±|

+ |j − 1⟩⟨j − 1| ⊗
∑

u

ξj,u,0

(
3j

3m
|good⟩+

√
1− 9j

9m
|bad⟩

)
⟨cont′d| ⊗ |±, ϕu,±⟩⟨±, ϕu,±|.

(88)

It is then a routine verification that CjΠj−1 = Πj−1 holds for all j = 1, . . . ,m− 1. This is also true
for j = m if we define Cm = |m − 1⟩⟨m − 1| ⊗ |good⟩⟨cont′d| (corresponding to setting ξm,u,0 = 1
for all u). For notational convenience, we may assume that branch marking and its inverse are
incorporated into C1 and Cm, respectively.

To simplify the discussion, we consider the case where the branch marking can be performed
perfectly, corresponding to input algorithms B1, . . . , Bm. This produces the output state

1√
2

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

m∑

j=1

ζj,u|j − 1⟩
(

3j

3m
|good⟩+

√
1− 9j

9m
|bad⟩

)
γu (|+, ϕu,+⟩+ |−, ϕu,−⟩) ,

(89)
where ζj,u are the cumulative coefficients at stages j

ζj,u = ξj,u,0

j−1∏

l=1

ξl,u,1. (90)

Moreover, we know that GPE has the action:
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(i) For
∣∣∣ λuαA

∣∣∣ ∈
[

1
3k+1 ,

1
3k

)
⊆
[
1
3l
, 1
)
, or equivalently, l ≥ k + 1,

ξl,u,1 ≈ 0, ξl,u,0 ≈ ±1. (91)

(ii) For
∣∣∣ λuαA

∣∣∣ ∈
[

1
3k+1 ,

1
3k

)
=
[

1
3l+1 ,

1
3l

)
, or equivalently, l = k,

|ξl,u,0|2 + |ξl,u,1|2 = 1. (92)

(iii) For
∣∣∣ λuαA

∣∣∣ ∈
[

1
3k+1 ,

1
3k

)
⊆
[
0, 1

3l+1

)
, or equivalently, l ≤ k − 1,

ξl,u,0 ≈ 0, ξl,u,1 ≈ i. (93)

This means that the cumulative coefficients satisfy ζj,u ≈ 0 if j ≥ k + 2 or j ≤ k − 1. So if we
further assume that GPE can be performed perfectly in the passband and stopband, corresponding
to input algorithms A1, . . . , Am, then we get

1√
2

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

(
ζk+1,u|k⟩

(
3k+1

3m
|good⟩+

√
1− 9k+1

9m
|bad⟩

)

+ ζk,u|k − 1⟩
(

3k

3m
|good⟩+

√
1− 9k

9m
|bad⟩

))
γu (|+, ϕu,+⟩+ |−, ϕu,−⟩) .

(94)
Compared with Eq. (81), our Eq. (94) maintains the uniform superposition of the eigenstates

|ϕu,±⟩ of the quantum walk operator. At the end, the branch marking register is uncomputed, so
the two branches can be merged back to recover the original eigenstate |ϕu⟩ of the input matrix.
In the next subsection, we will describe a deterministic amplification schedule for Tunable VTAA
to amplify such a state.

4.2 Deterministic amplification schedule

We now describe a deterministic amplification schedule for Tunable VTAA to prepare a state
proportional to

ψd-inv =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

(
ζk+1,u

3k+1

3m
|k⟩+ ζk,u

3k

3m
|k − 1⟩

)
γu|ϕu⟩,

∥ψd-inv∥2 =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2

(
|ζk+1,u|2

9k+1

9m
+ |ζk,u|2

9k

9m

)
= psucc,d-inv.

(95)

For presentational purposes, we assume that we know the precise value of psucc,d-inv. This assump-
tion is without loss of generality as the asymptotic scaling of algorithm is not affected if a constant
multiplicative approximation of psucc,d-inv is used instead, which can be constructed from a con-
stant multiplicative estimate of psucc, because psucc,d-inv = Θ (psucc) holds per Proposition 25 of
Appendix E.2.

Following the discussion in Section 1.4, we consider the thresholds

αj =

{
c29j−m+l

∥∥ΠjΠbAj · · ·A1|ψ0⟩
∥∥2 , j = m− l + 1, . . . ,m,

0, j = 1, . . . ,m− l,
(96)

for some constant c ⪆ 1 (say c = 1.001) and integer 0 ≤ l ≤ m to be determined later.
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Analysis of amplification threshold We know from Proposition 4 that
∑m

j=m−l+1 αj = O(1)
must hold to avoid a large loss factor. Here, we can use Eq. (94) to evaluate the potentially good
probabilities as

∥∥ΠjΠbAj · · ·A1|ψ0⟩
∥∥2

=
∥∥ΠjΠbAm · · ·A1|ψ0⟩

∥∥2

=
m−1∑

k=j

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2 +

m−1∑

k=j+1

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2

+

j−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2

9k+1

9m
+

j∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2

9k

9m
.

(97)

In doing so, we have assumed again that GPE and branch marking can be performed perfectly. See
Proposition 26 from Appendix E.3 for the complete analysis.

Using this, we compute the sum of threshold values:

m∑

j=m−l+1

αj

≤ c2
m∑

j=m−l+1

(
m−1∑

k=j

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2 +

j−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2

9k+1

9m

+

m−1∑

k=j+1

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2 +

j∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2

9k

9m

)
9j−m+l

= c2
l∑

j=1

(
m−1∑

k=j+m−l

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2 +

j+m−l−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2

9k+1

9m

+

m−1∑

k=j+m−l+1

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2 +

j+m−l∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2

9k

9m

)
9j .

(98)
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By exchanging the order of summation, we may bound first line of the result as

l∑

j=1

( m−1∑

k=j+m−l

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2 +

j+m−l−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2

9k+1

9m

)
9j

=

m−1∑

k=m−l+1

k−m+l∑

j=1

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2 9j +

m−1∑

k=0

l∑

j=k−m+l+1

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2

9k+1

9m
9j

≤ 9

8

m−1∑

k=m−l+1

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2 9k−m+l +

9

8

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2

9k+1

9m
9l

≤ 5

4

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2

9k+1

9m
9l.

(99)
Similarly,

l∑

j=1

( m−1∑

k=j+m−l+1

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2 +

j+m−l∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2

9k

9m

)
9j

=

m−1∑

k=m−l+2

k−m+l−1∑

j=1

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2 9j +

m∑

k=0

l∑

j=k−m+l

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2

9k

9m
9j

≤ 9

8

m−1∑

k=m−l+2

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2 9k−m+l−1 +

9

8

m∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2

9k

9m
9l

≤ 5

4

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2

9k

9m
9l.

(100)

Altogether, we obtain

c2psucc,d-inv9
l = αm ≤

m∑

j=m−l+1

αj =
m∑

j=m−l+1

c2
∥∥ΠjΠbAj · · ·A1|ψ0⟩

∥∥2 9j−m+l

≤ 5c2

4



m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk+1,u|2

9k+1

9m
+

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 |ζk,u|2

9k

9m


 9l

=
5c2

4
psucc,d-inv9

l.

(101)

We thus have
∑m

j=m−l+1 αj ≤ 1 as long as l ≤ Floor

(
log3

(
2√

5c
√
psucc,d-inv

))
= O

(
log3

(
1√
psucc

))
.

In particular, there is no over amplification and the loss factor of VTAA is constant.

Analysis of amplification schedule Next, let us derive the deterministic amplification sched-
ule. At the beginning, j = m− l + 1, and we compare

∥∥∥Πm−l+1ΠbAm−l+1Ãm−l|ψ0⟩
∥∥∥ =

∥∥Πm−l+1ΠbAm−l+1Am−l · · ·A1|ψ0⟩
∥∥ (102)
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and
1

3

√
αm−l+1 = c

∥∥Πm−l+1ΠbAm−l+1Am−l · · ·A1|ψ0⟩
∥∥ . (103)

Assuming c ⪆ 1 (say c = 1.001), we find that

∥∥∥Πm−l+1ΠbAm−l+1Ãm−l|ψ0⟩
∥∥∥ < 1

3

√
αm−l+1,

3
∥∥∥Πm−l+1ΠbAm−l+1Ãm−l|ψ0⟩

∥∥∥ ≥ 1

3

√
αm−l+1,

(104)

so 3 amplification steps are needed for j = m− l + 1. After that,

(
1− 1

6
9
∥∥Πm−l+1ΠbAm−l+1 · · ·A1|ψ0⟩

∥∥2
)
3
∥∥Πm−l+1ΠbAm−l+1 · · ·A1|ψ0⟩

∥∥

≤
∥∥∥Πm−l+1ΠbÃm−l+1|ψ0⟩

∥∥∥
≤ 3

∥∥Πm−l+1ΠbAm−l+1 · · ·A1|ψ0⟩
∥∥ .

(105)

By induction, suppose we have

j∏

k=m−l+1

(
1− 1

6
9
∥∥∥ΠkΠbAkÃk−1|ψ0⟩

∥∥∥
2
)∥∥ΠjΠbAj · · ·A1|ψ0⟩

∥∥ 3j−m+l

≤
∥∥∥ΠjΠbÃj |ψ0⟩

∥∥∥
≤
∥∥ΠjΠbAj · · ·A1|ψ0⟩

∥∥ 3j−m+l

(106)

after stage j. For j + 1, we want to compare

∥∥∥Πj+1ΠbAj+1Ãj |ψ0⟩
∥∥∥ (107)

and
1

3

√
αj+1 = c3j−m+l

∥∥Πj+1ΠbAj+1Aj · · ·A1|ψ0⟩
∥∥ . (108)

Using the inductive hypothesis and Eq. (44),

j∏

k=m−l+1

(
1− 1

6
9
∥∥∥ΠkΠbAkÃk−1|ψ0⟩

∥∥∥
2
)∥∥Πj+1ΠbAj+1 · · ·A1|ψ0⟩

∥∥ 3j−m+l

≤
∥∥∥Πj+1ΠbAj+1Ãj |ψ0⟩

∥∥∥
≤
∥∥Πj+1ΠbAj+1 · · ·A1|ψ0⟩

∥∥ 3j−m+l.

(109)

Then since the loss factor ≥
(
5
6

)∑m
j=1 αj ≥ 5

6 , the amplitude satisfies

∥∥∥Πj+1ΠbAj+1Ãj |ψ0⟩
∥∥∥ < 1

3

√
αj+1,

3
∥∥∥Πj+1ΠbAj+1Ãj |ψ0⟩

∥∥∥ ≥ 1

3

√
αj+1.

(110)
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So again we need 3 amplification steps for j + 1. After that,

j+1∏

k=m−l+1

(
1− 1

6
9
∥∥∥ΠkΠbAkÃk−1|ψ0⟩

∥∥∥
2
)∥∥Πj+1ΠbAj+1 · · ·A1|ψ0⟩

∥∥ 3j+1−m+l

≤
(
1− 1

6
9
∥∥∥Πj+1ΠbAj+1Ãj |ψ0⟩

∥∥∥
2
)
3
∥∥∥Πj+1ΠbAj+1Ãj |ψ0⟩

∥∥∥

≤
∥∥∥Πj+1ΠbÃj+1|ψ0⟩

∥∥∥

≤ 3
∥∥∥Πj+1ΠbAj+1Ãj |ψ0⟩

∥∥∥
≤
∥∥Πj+1ΠbAj+1 · · ·A1|ψ0⟩

∥∥ 3j+1−m+l.

(111)

The induction is now complete. We obtain the following deterministic amplification schedule as
desired:

2rj + 1 =

{
3, j = m− l + 1, . . . ,m,

1, j = 1, . . . ,m− l.
(112)

Analysis of query complexity We now consider the query complexity. Invoking Proposition 6,
we have the cost

O

(
1√
psucc

Cost (Am−l+1 · · ·A1|ψ0⟩)

+
1√
psucc

m∑

j=m−l+2

1
√
αj−1

∥∥Πj−1ΠbAj−1 · · ·A1|ψ0⟩
∥∥Cost (Aj)

)

= O

(
1√
psucc

Cost (Ob) +
1√
psucc

log

(
1

ϵbm

)
Cost (OA) +

1√
psucc

m−l+1∑

j=1

3j log

(
1

ϵgpe,j

)
Cost(OA)

+
1√
psucc

m∑

j=m−l+2

3m−l−j3j log

(
1

ϵgpe,j

)
Cost (OA)

)
,

(113)
where we have again used psucc,d-inv = Θ (psucc). Here, the cost of GPE grows exponentially with
the stage number j like ∼ 3j , suggesting a non-uniform error schedule of the following form

ϵgpe,j =

{
ϵgpe
l , j = m− l + 2, . . . ,m,
ϵgpe

l·2m−l+1−j , j = 1, . . . ,m− l + 1.
(114)

This then leads to the cost

O

(
1√
psucc

Cost (Ob) +
1√
psucc

log

(
1

ϵbm

)
Cost (OA)

+
1√
psucc

m−l+1∑

j=1

3j(m− l + 1− j) log

(
l

ϵgpe

)
Cost(OA)

+
1√
psucc

m∑

j=m−l+2

3m−l−j3j log

(
l

ϵgpe

)
Cost (OA)

)

= O

(
1√
psucc

Cost (Ob) +
1√
psucc

(
log

(
1

ϵbm

)
+
lκ

3l
log

(
l

ϵgpe

))
Cost (OA)

)
,

(115)
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which decreases as l increases. So we should choose the largest possible l:

l = Floor

(
log3

(
2√

5c
√
psucc,d-inv

))
= Θ

(
log3

(
1√
psucc

))
. (116)

Analysis of success probability As an immediate consequence of the choice of schedule, we
obtain ∥∥∥ΠmΠbÃm|ψ0⟩

∥∥∥ ≥ 5

6
3l
∥∥ΠmΠbAm · · ·A1|ψ0⟩

∥∥

≥ 5

6
3
log3

(
2√

5c
√
psucc,d-inv

)
−1√

psucc,d-inv

=
5

6

2√
5c
√
psucc,d-inv

1

3

√
psucc,d-inv =

√
5

9c
.

(117)

So VTAA outputs the normalized version of discretized inverse state ψd-inv with a constant success
probability.

Analysis of error With this deterministic schedule, the initial state |b⟩ and input algorithms
A1, . . . , Am−l+1 are invoked 3l times. After that, algorithm Aj is invoked 3m−j+1 times for j =
m− l + 2, . . . ,m. So the total error of preparing the discretized inverse state is at most

3lϵbm + 3l
m−l+1∑

j=1

ϵgpe
l · 2m−l+1−j +

m∑

j=m−l+2

3m−j+1 ϵgpe
l

= O
(
3l (ϵbm + ϵgpe)

)
= O

(
ϵbm + ϵgpe√

psucc

)
.

(118)
Thus, by setting

ϵbm, ϵgpe = Θ (
√
psuccϵ) , (119)

we can generate the discretized inverse state ψd-inv with constant probability, accuracy ϵ and query
complexity

O

(
1√
psucc

Cost (Ob) + κ log

(
1√
psucc

)
log

(
1√
psuccϵ

)
Cost (OA)

)
. (120)

In the next subsection, we show how to project the error into potentially good subspaces to improve
the query complexity to

O


 1√

psucc
Cost (Ob) + κ log

(
1√
psucc

)
log



log
(

1√
psucc

)

ϵ


Cost (OA)


 . (121)

4.3 Projecting error toward potentially good subspaces

In this subection, we present an improved error analysis for preparing the normalized discretized
inverse state by projecting error onto potentially good subspaces.

To begin with, recall that if branch marking were perfectly performed, our discretized inverse
state would take the form

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

m∑

j=1

ζj,u|j − 1⟩
(

3j

3m
|good⟩+

√
1− 9j

9m
|bad⟩

)
γu|ϕu⟩, (122)
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where ζj,u = ξj,u,0
∏j−1
l=1 ξl,u,1 are the cumulative coefficients, such that the normalization condition

|ξl,u,0|2 + |ξl,u,1|2 = 1 holds at all stages l. If GPEs were also performed perfectly, then majority of
ζj,u would be zero unless j = k, k + 1 and we get

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

(
ζk+1,u|k⟩

(
3k+1

3m
|good⟩+

√
1− 9k+1

9m
|bad⟩

)

+ ζk,u|k − 1⟩
(

3k

3m
|good⟩+

√
1− 9k

9m
|bad⟩

))
γu|ϕu⟩.

(123)

Let us compare these two states, but only within the potentially good subspaces. That is, we
compare

ψd-inv,m =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

m∑

j=1

ζj,u|j − 1⟩ 3
j

3m
γu|ϕu⟩, ∥ψd-inv,m∥2 = psucc,d-inv,m,

ψd-inv =

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

(
ζk+1,u|k⟩

3k+1

3m
+ ζk,u|k − 1⟩ 3

k

3m

)
γu|ϕu⟩, ∥ψd-inv∥2 = psucc,d-inv.

(124)
Then their squared Euclidean distance is bounded by

∥ψd-inv,m − ψd-inv∥2 ≤
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j ̸=k,k+1

|ζj,u|2
9j

9m
. (125)

We divide the analysis into two cases.

(i) j ≤ k − 1: In this case, we use the bound

{
|ξl,u,1| ≤ 1, l = 1, . . . , j − 1,

|ξj,u,0| ≤ ϵqpe,j .
(126)

to obtain
|ζj,u| ≤ ϵgpe,j . (127)

(ii) j ≥ k + 2: In this case, we use the bound





|ξl,u,1| ≤ 1, l = 1, . . . , k,

|ξl,u,1| ≤ ϵgpe,l, l = k + 1, . . . , j − 1,

|ξj,u,0| ≤ 1,

(128)

to obtain

|ζj,u| ≤
j−1∏

l=k+1

ϵgpe,l. (129)
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This bounds the squared distance by

∥ψd-inv,m − ψd-inv∥2 ≤
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2



k−1∑

j=1

ϵ2gpe,j
9j

9m
+

m∑

j=k+2

j−1∏

l=k+1

ϵ2gpe,l
9j

9m




≤
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2



k−1∑

j=1

ϵ2gpe,j
9k−1

9m
+

m∑

j=k+2

ϵ2gpe,j−1

9k+2

9m




≤



m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9

k+2

9m







m∑

j=1

ϵgpe,j




2

≤ 9psucc,d-inv,1ϵ
2
gpe,

(130)

where

psucc,d-inv,1 =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9

k+1

9m
. (131)

Here, we assume all ϵgpe,l ≤ 1
3 in the second inequality and upper bound the ℓ2-norm by ℓ1-norm

in the third inequality.
Now we take the error of branch marking into account. If the actual output state is ψd-inv,bm

with ∥ψd-inv,bm∥2 = psucc,d-inv,bm, then

∥ψd-inv,bm − ψd-inv,m∥ ≤ 2ϵbm, (132)

implying through the triangle inequality that

∥ψd-inv,bm − ψd-inv∥ = O
(√
psucc,d-inv,1ϵgpe + ϵbm

)
. (133)

Hence, by [39, Lemma 24],

∥∥∥∥
ψd-inv,bm√
psucc,d-inv,bm

− ψd-inv√
psucc,d-inv

∥∥∥∥ ≤ 2 ∥ψd-inv,bm − ψd-inv∥√
psucc,d-inv

= O

(
ϵgpe +

ϵbm√
psucc

)
, (134)

where we have used psucc,d-inv = Θ(psucc,d-inv,1) = Θ(psucc) from Proposition 25. We see that the
error of GPE shrinks by a factor of Θ

(√
psucc

)
when projected onto the potentially good subspaces,

which cancels with the state normalization factor Θ
(

1√
psucc

)
. Hence, we choose

ϵgpe = Θ(ϵ), ϵbm = Θ (
√
psuccϵ) , (135)

obtaining the claimed query complexity of preparing discretized inverse state

O


 1√

psucc
Cost (Ob) + κ log

(
1√
psucc

)
log



log
(

1√
psucc

)

ϵ


Cost (OA)


 . (136)

37



4.4 Solution norm estimation

Up to this point, we have assumed that a constant multiplicative estimate of the solution norm∥∥|A−1|b⟩⟩
∥∥ is available a prior. This assumption is equivalent to knowing psucc and psucc,d-inv to

a constant multiplicative accuracy, which is necessary to achieve the O
(

1√
psucc

)
scaling for initial

state preparation. In this subsection, we show that this strictly linear scaling can be attained even
with an unknown solution norm, when psucc is replaced by its lower bound αpsucc ≤ psucc. In fact,
we will describe a solution norm estimation algorithm whose query complexity of the initial state

oracle has the scaling O
(

1√
αpsucc

)
.

We begin by introducing the amplitude estimation algorithm.

Lemma 7 (Amplitude estimation). Let U be a unitary and Π be an orthogonal projection. Then
for any ϵ, δ > 0, there exists a quantum algorithm that outputs y with

P (|y − ∥ΠU |0⟩∥| ≥ ϵ) < δ (137)

using

O

(
1

ϵ
log

(
1

δ

))
(138)

queries to controlled-U , controlled-reflection I − 2Π and their inverses.

Note that in applications where the target accuracy ϵ = Θ(1) is constant, it is possible to perform
amplitude estimation by repeatedly measuring outcome of the algorithm and applying Chernoff
bound. Otherwise if a smaller ϵ is desired, we can use quantum phase estimation [11].

To simplify the discussion, we first consider the discretized inverse state with an unknown
psucc,d-inv = ∥ψd-inv∥2 but a known lower bound αpsucc,d-inv ≤ psucc,d-inv. We then (mathematically)
define

l∗ = Floor

(
log3

(
2√

5c
√
psucc,d-inv

))
. (139)

If we run Tunable VTAA with l∗, our analysis in Section 4.2 then shows that the success amplitude
is at least ∥∥∥ΠmΠbÃm|ψ0⟩

∥∥∥ ≥
√
5

9c
. (140)

Our claim is that if l < l∗ is sufficiently small, the success amplitude is constant gapped below
√
5

9c .
Indeed, if l ≤ l∗ − 2,

∥∥∥ΠmΠbÃm|ψ0⟩
∥∥∥ ≤ 3l

∥∥ΠmΠbAm · · ·A1|ψ0⟩
∥∥ ≤ 3l

∗−2√psucc,d-inv

≤ 3
log3

(
2√

5c
√
psucc,d-inv

)
−2√

psucc,d-inv

=
2√

5c
√
psucc,d-inv

1

9

√
psucc,d-inv =

2
√
5

45c
.

(141)

Our solution norm estimation algorithm proceeds as follows. We run Tunable VTAA for pre-
merging parameter l = 1, 2, . . . and perform amplitude estimation with a sufficiently small (yet
constant) accuracy and failure probability δl. When iterating through l = 1, 2, . . ., with high

probability we see the estimated amplitude below
√
5

15c for all l = 1, . . . , l∗ − 2 and amplitude above
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4
√
5

45c for either l = l∗ − 1, l∗. Supposing the first time we see the amplitude above 4
√
5

45c is at some l,
we consider the value l + 1. Then, we have

log3

(
2√

5c
√
psucc,d-inv

)
− 1 ≤ l∗ ≤ l + 1 ≤ l∗ + 1 ≤ log3

(
2√

5c
√
psucc,d-inv

)
+ 1, (142)

which implies
1

3

2√
5c
√
psucc,d-inv

≤ 3l+1 ≤ 3
2√

5c
√
psucc,d-inv

. (143)

Hence, 2√
53l+1c

is a 3-multiplicative approximation of
√
psucc,d-inv.

Note that for each fixed l, Tunable VTAA has query complexity

3lCost (Am−l+1 · · ·A1|ψ0⟩) +
m∑

j=m−l+2

3m−j+1Cost (Aj)

= O


3lCost(Ob) + 3l

m−l+1∑

j=1

3j log
(
2m−l+1−jl

)
Cost(OA) +

m∑

j=m−l+2

3m−j+13j log(l)Cost(OA)




= O
(
3lCost(Ob) + κl log(l)Cost(OA)

)
.

(144)
The total query complexity is thus bounded by

O

(
l∗∑

l=1

3l log

(
1

δl

)
Cost(Ob) +

l∗∑

l=1

κl log(l) log

(
1

δl

)
Cost(OA)

)
. (145)

Let us choose the schedule of failure probabilities

δl =
1

(αl∗ − l + 3)2
, αl∗ = Floor

(
log3

(
2√

5c
√
αpsucc,d-inv

))
≥ l∗. (146)

By the union bound, the total failure probability is at most

l∗∑

l=1

1

(αl∗ − l + 3)2
≤

αl∗∑

l=1

1

(αl∗ − l + 3)2
≤ 1

32
+

1

42
+ · · · = π2

6
− 5

4
≈ 0.4. (147)

The query complexity then becomes

O

(
l∗∑

l=1

3l log (αl∗ − l + 3)Cost(Ob) +

l∗∑

l=1

κl log(l) log (αl∗ − l + 3)Cost(OA)

)

= O

(
1

√
αpsucc,d-inv

Cost(Ob) + κ log2

(
1

√
αpsucc,d-inv

)
log log2

(
1

√
αpsucc,d-inv

)
Cost(OA)

)
.

(148)

The above analysis assumes that GPE and branch marking can be performed perfectly, and that
a lower bound αpsucc,d-inv ≤ psucc,d-inv is known a prior. In practice, the output state is ψd-inv,bm with

∥ψd-inv,bm∥2 = psucc,d-inv,bm, but we would still proceed as above, except we replace all psucc,d-inv
by psucc,d-inv,bm. As per Proposition 26, we can also convert the given lower bound αpsucc ≤ psucc
into some αpsucc,d-inv,bm ≤ psucc,d-inv,bm. Consequently, what we actually obtain is a 3-multiplicative
approximation of

√
psucc,d-inv,bm. Invoking Proposition 26 once more, we obtain a constant multi-

plicative approximation of
√
psucc.
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Theorem 1 (Solution norm estimation with optimal initial state preparation). Let A be the coef-
ficient matrix such that A/αA is block encoded by OA with normalization factor αA ≥ ∥A∥. Let |b⟩
be the initial state prepared by oracle Ob. Then the solution norm

∥∥A−1|b⟩
∥∥, and hence the success

amplitude
√
psucc =

∥A−1|b⟩∥
αA−1

, can be estimated to a constant multiplicative accuracy and success

probability > 1
2 with query complexity

O

(
1

√
αpsucc

Cost(Ob) + κ log2
(

1
√
αpsucc

)
log log2

(
1

√
αpsucc

)
Cost(OA)

)
, (149)

where αA−1 ≥
∥∥A−1

∥∥ is a norm upper bound on the inverse matrix, κ = αAαA−1 is an upper bound
on the spectral condition number, and αpsucc ≤ psucc is a lower bound on the success probability.
The algorithm uses a nested amplitude amplification with deterministic schedule Eq. (112) and an
increasing choice of pre-merging parameter l = 1, 2, . . .

5 Solving linear systems

We now consider the quantum linear system problem. In Section 5.1, we show that the problem
can be solved by inverting the input matrix over the discretized inverse state. Combining with
the VTAA algorithm from the previous section, we provide a simplified quantum linear system
algorithm with optimal queries to the initial state preparation and nearly optimal queries to the
coefficient matrix block encoding. We provide a proof of the optimality in Section 5.2.

5.1 Matrix inversion over discretized inverse state

Recall from Section 4 that we can use Tunable VTAA to prepare the following state with accuracy
ϵ and constant success probability

1
√
psucc,d-inv

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

(
ζk+1,u

3k+1

3m
|k⟩+ ζk,u

3k

3m
|k − 1⟩

)
γu|ϕu⟩,

psucc,d-inv =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2

(
|ζk+1,u|2

9k+1

9m
+ |ζk,u|2

9k

9m

)
.

(150)

This state differs from the solution state in that the reciprocal of eigenvalues are replaced by the
discrete values 3k

3m . To get the actual solution state, we perform a block-encoded matrix inversion
based on the following gadget.

Lemma 8 (Block encoding inversion [22, Corollary 69]). Let A be a matrix such that A/αA is block
encoded by OA with some normalization factor αA ≥ ∥A∥. Then the operator

A−1

2αA−1

(151)

can be block encoded with accuracy ϵ using

O

(
κ log

(
1

ϵ

))
(152)

queries to the controlled-OA and its inverse, where αA−1 ≥
∥∥A−1

∥∥ is a norm upper bound on the
inverse matrix, and κ = αAαA−1 is an upper bound on the spectral condition number.
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In our case, we apply the block-encoded inversion of the input matrix with accuracy ϵblk,
controlled by the clock register:

m−1∑

k=0

|k⟩⟨k| ⊗
Π[ 1

3k+2 ,1)
A−1Π[ 1

3k+2 ,1)

2 · 3k+2

αA

, ΠS =
∑

∣∣∣ λuαA ∣∣∣∈S
|ϕu⟩⟨ϕu|. (153)

Here, the clock state |k⟩ corresponds to eigenvalues of the input matrix within the interval
∣∣∣ λuαA

∣∣∣ ∈
[ 1
3k+2 ,

1
3k
), thus to fully cover all possible eigenvalues, we perform the block-encoded matrix inversion

over [ 1
3k+2 , 1). This block encoding can be implemented with query complexity O (κ log(1/ϵblk)),

by using the |k⟩ register to control the rotations in the quantum signal processing circuit [37], and
the entire operator has accuracy ϵblk due to its block diagonal structure. With a high probability,
we then transform the state into

1
√
psucc,blk

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

(
ζk+1,u

1

3m
αA
2 · 3

1

λu
|k⟩+ ζk,u

1

3m
αA
2 · 3

1

λu
|k − 1⟩

)
γu|ϕu⟩,

psucc,blk =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

∣∣∣∣
1

3m
αA
2 · 3

1

λu

∣∣∣∣
2

=
psucc
36

.

(154)

This state can be produced with probability close to unity by another amplitude amplification.
Finally, we uncompute the clock register by reversing the GPE (without performing rotations

|good⟩ 7→ 3j

3m |good⟩+
√
1− 9j

9m |bad⟩ or VTAA), obtaining the normalized solution state

∑
u

1
λu
γu|ϕu⟩√

∑
u

∣∣∣ γuλu
∣∣∣
2

=
A−1|b⟩
∥A−1|b⟩∥ . (155)

As per Proposition 25, we only need at most constant rounds of amplitude amplifications beyond
the preparation of discretized inverse state by Tunable VTAA. We have thus established the main
algorithm.

Theorem 2 (Quantum linear system algorithm with optimal initial state preparation). Let A be the
coefficient matrix such that A/αA is block encoded by OA with normalization factor αA ≥ ∥A∥. Let
|b⟩ be the initial state prepared by oracle Ob. Suppose that the solution norm

∥∥A−1|b⟩
∥∥, and hence

the success amplitude
√
psucc =

∥A−1|b⟩∥
αA−1

, can be estimated to a constant multiplicative accuracy.

Then the quantum state
A−1|b⟩
∥A−1|b⟩∥ (156)

can be prepared to accuracy ϵ and success probability > 1
2 with query complexity

O


 1√

psucc
Cost (Ob) + κ log

(
1√
psucc

)
log



log
(

1√
psucc

)

ϵ


Cost (OA)


 , (157)

where αA−1 ≥
∥∥A−1

∥∥ is a norm upper bound on the inverse matrix, and κ = αAαA−1 is an upper
bound on the spectral condition number. The algorithm uses a nested amplitude amplification with

deterministic schedule Eq. (112) and pre-merging parameter l = Θ
(
log3

(
1√
psucc

))
.
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5.2 Lower bound

Now, we prove that our query complexity to the initial state preparation is optimal, by showing
how the quantum search problem [24] can be solved by a linear system algorithm. We note that a
similar lower bound [51] have been previously derived.

Specifically, consider the d-dimensional initial state

|b⟩ = 1√
d


∑

j ̸=w
|j⟩ − |w⟩


 , (158)

where |w⟩ ∈ {|0⟩, |1⟩, . . . , |d− 1⟩} is an arbitrary unknown basis state. This state can be (and only
be) prepared by making 1 query to the Grover oracle with the uniform superposition state. We
can perform an orthogonal decomposition of |b⟩ along the uniform superposition state to get

|b⟩ = d− 2

d
|+⟩+ 2

√
d− 1

d
|−b⟩, (159)

where

|+⟩ = 1√
d

∑

j

|j⟩, |−b⟩ =
∑

j ̸=w

1√
(d− 1)d

|j⟩+
√
d− 1

d
|w⟩. (160)

Now, we define the coefficient matrix

A =
1√
d
(I − |+⟩⟨+|) + |+⟩⟨+|. (161)

Note that A can be block encoded with normalization factor αA = 1 and zero query to the Grover
oracle. Then the inverse matrix

A−1 =
√
d (I − |+⟩⟨+|) + |+⟩⟨+| (162)

has spectral norm ∥∥A−1
∥∥ =

√
d = αA−1 . (163)

We now invoke the quantum linear system algorithm, obtaining a state within Euclidean dis-
tance ϵlin to the solution

A−1|b⟩
∥A−1|b⟩∥ . (164)

Here,

A−1|b⟩ = 2

√
d− 1

d
|−b⟩+

d− 2

d
|+⟩

=
∑

j ̸=w

d− 2 + 2
√
d

d
√
d

|j⟩ − 2(d− 1)
√
d− d+ 2

d
√
d

|w⟩,
(165)

which implies
∥∥A−1|b⟩

∥∥ =

√
5d2 − 8d+ 4

d2
. (166)

So the inverse success amplitude is

∥∥A−1
∥∥

∥A−1|b⟩∥ =
√
d

√
d2

5d2 − 8d+ 4
= Θ

(√
d
)
. (167)
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Meanwhile, the absolute value of amplitude of the desired |w⟩ is lower bounded by

∣∣∣∣
⟨w|A−1|b⟩
∥A−1|b⟩∥

∣∣∣∣− ϵlin ≥

∣∣∣∣∣∣

2(d−1)
√
d+d−2

d
√
d√

5d2−8d+4
d2

∣∣∣∣∣∣
− ϵlin ≥

2(d−1)
√
d−2

d
√
d√

5d2+4
d2

− ϵlin

≥
2(d−2)

√
d

d
√
d√

5(d+1)2

d2

− ϵlin =
2√
5

d− 2

d+ 1
− ϵlin

=
2√
5

(
1− 3

d+ 1

)
− ϵlin ≥ 13

8
√
5
− ϵlin

(168)

when d ≥ 15. Let us choose

ϵlin =
1

60
, (169)

so the probability of outcome |w⟩ is at least
(

13

8
√
5
− 1

60

)2

> 0.504. (170)

This thus solves the Grover search problem, and we conclude that the query complexity to the
initial state is at least

Ω
(√

d
)
= Ω

( ∥∥A−1
∥∥

∥A−1|b⟩∥

)
. (171)

Theorem 3 (Lower bound on initial state queries). For any 0 < p < 1, there exists a linear system
with coefficient matrix A and initial state |b⟩ satisfying

∥∥A−1|b⟩
∥∥2

∥A−1∥2
= Θ(p), (172)

such that

min

{
g ∈ Z≥0

∣∣∣ ∃ a quantum algorithm V making g queries to Ob,

∥∥∥∥V |0⟩ − A−1|b⟩
∥A−1|b⟩∥

∥∥∥∥ = O(1) sufficiently small

}
= Ω

(
1√
p

)
.

(173)

6 Block preconditioning

In this section, we introduce the technique of block preconditioning, and describe its algorithmic
applications. Specifically, we present a simple quantum linear system solver in Section 6.1 with
optimal queries to the coefficient matrix block encoding by choosing the initial state itself as the pre-
conditioner. Combining block preconditioning with our main algorithms Theorem 1 and Theorem 2,
we then show how to reduce the cost of initial state preparation in solving differential equations
(Section 6.2), estimating real eigenvalues of non-normal matrices (Section 6.3), transforming ma-
trices with real spectra and preparing their ground states (Section 6.4). Additionally, we apply
block preconditioning to improve the block encoded version of quantum eigenvalue transformer in
Section 6.5.
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6.1 Quantum linear system solver

Our quantum linear system algorithm in Theorem 2 has an optimal query complexity of the initial
state preparation, and a nearly optimal cost of the coefficient block encoding. We now show that it
is possible to solve a preconditioned quantum linear system problem, producing the same solution
state but making an optimal number of queries to the block encoding oracle.

Specifically, we choose the preconditioner to be the initial state |b⟩ itself and define the scaling
matrix

S = s|b⟩⟨b|+ (I − |b⟩⟨b|) , S−1 =
1

s
|b⟩⟨b|+ (I − |b⟩⟨b|) , 0 < s < 1. (174)

Then solving the preconditioned quantum linear system problem would produce the same solution
state because

(SA)−1|b⟩
∥(SA)−1|b⟩∥ =

A−1|b⟩
∥A−1|b⟩∥ . (175)

We can block encode S with normalization factor 1 using 2 queries to the initial state oracle Ob
through the linear combination

S = Ob

(
1− s

2
(I − 2|0⟩⟨0|) + 1 + s

2
I

)
O†
b . (176)

This then yields a block encoding of SA/αA with normalization factor αA same as that of the input
matrix. Meanwhile, the inverse matrix has the norm bound

∥∥(SA)−1
∥∥ =

∥∥A−1S−1
∥∥ =

∥∥∥∥
1

s
A−1|b⟩⟨b|+A−1 (I − |b⟩⟨b|)

∥∥∥∥

≤

√
∥A−1|b⟩∥2

s2
+ ∥A−1 (I − |b⟩⟨b|)∥2 ≤

√
∥A−1|b⟩∥2

s2 ∥A−1∥2
+ 1

∥∥A−1
∥∥ ,

(177)

whereas the solution norm becomes

∥∥(SA)−1|b⟩
∥∥ =

1

s

∥∥A−1|b⟩
∥∥ . (178)

Suppose we have a constant multiplicative approximation of the solution norm
∥∥A−1|b⟩

∥∥, say

t

2
<
∥∥A−1|b⟩

∥∥ < 2t ⇔
∥∥A−1|b⟩

∥∥
2

< t < 2
∥∥A−1|b⟩

∥∥ (179)

without loss of generality. Then we choose

s =
t

2αA−1

,

∥∥A−1|b⟩
∥∥

4αA−1

< s <

∥∥A−1|b⟩
∥∥

αA−1

≤
∥∥A−1|b⟩

∥∥
∥A−1∥ ≤ 1. (180)

This choice gives the norm bound on the preconditioned inverse matrix

∥∥(SA)−1
∥∥ ≤

√
∥A−1|b⟩∥2

s2
+ ∥A−1∥2 ≤

√
17αA−1 , (181)

and the preconditioned solution norm

∥∥(SA)−1|b⟩
∥∥ =

1

s

∥∥A−1|b⟩
∥∥ =

2αA−1

∥∥A−1|b⟩
∥∥

t
, (182)
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which implies the success amplitude after block preconditioning

√
psucc =

∥∥(SA)−1|b⟩
∥∥

√
17αA−1

=
2
∥∥A−1|b⟩

∥∥
√
17t

≥ 1√
17
. (183)

Thus, by invoking the QSVT-based linear system solver (Lemma 8), we can obtain the solution
state to accuracy ϵ and constant success probability with query complexity

O

(
κ log

(
1

ϵ

)
Cost(Ob) + κ log

(
1

ϵ

)
Cost(OA)

)
. (184)

Moreover, this approach does not require padding the target linear system, and appears to be
conceptually even simpler than the kernel reflection method [19] which in turn simplifies the discrete
adiabatic method [18].

Theorem 4 (Quantum linear system algorithm with optimal coefficient block encoding). Let A be
the coefficient matrix such that A/αA is block encoded by OA with normalization factor αA ≥ ∥A∥.
Let |b⟩ be the initial state prepared by oracle Ob. Suppose that the solution norm

∥∥A−1|b⟩
∥∥, and hence

the success amplitude
√
psucc =

∥A−1|b⟩∥
αA−1

, can be estimated to a constant multiplicative accuracy.

Then the quantum state
A−1|b⟩
∥A−1|b⟩∥ (185)

can be prepared to accuracy ϵ and success probability > 1
2 with query complexity

O

(
κ log

(
1

ϵ

)
Cost(Ob) + κ log

(
1

ϵ

)
Cost(OA)

)
, (186)

where αA−1 ≥
∥∥A−1

∥∥ is a norm upper bound on the inverse matrix, and κ = αAαA−1 is an
upper bound on the spectral condition number. The algorithm solves a preconditioned linear system
specified by the scaling operator Eq. (174) and parameter Eq. (179) and Eq. (180).

6.2 Quantum differential equation solver

Differential equations arise naturally in a broad range of scientific disciplines including engineering,
physics, economics, and biology. However, classical differential equation solvers can struggle to
handle problems of large dimensions, which motivates the development of quantum algorithms. To
be concrete, consider the system of first-order linear differential equations

d

dt
x(t) = Ax(t), x(0) = b, (187)

whose solution is given formally by
x(t) = etAb. (188)

Here, we assume the coefficient matrix A/αA is block encoded by OA with normalization factor
αA ≥ ∥A∥ and the initial state |b⟩ is prepared through the oracle Ob.

Many previous quantum differential equation algorithms proceed by recasting the problem as
solving a system of linear equations, and then solve the recast problem using a quantum linear
system solver. However, such algorithms have query complexity of Ob comparable to that of OA,
and are thus inefficient when preparing initial states incurs a substantial cost. We show that the
cost of initial state preparation can be lowered using our Theorem 2 and block preconditioning,
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nearly matching or outperforming the performance of alternative solvers for differential equations,
and attaining the query complexity lower bound established in [20]. For illustration purposes, we
focus on the differential equation solvers implementing the truncated Taylor series [9], although
similar improvements can be achieved for other linear-system-based solvers.

In this algorithm, the coefficient matrix is given by

Cn,k,p

(
A

αA

)

=
n−1∑

i=0




k∑

j=0

|i(k + 1) + j⟩⟨i(k + 1) + j| ⊗ I −
k∑

j=1

|i(k + 1) + j⟩⟨i(k + 1) + j − 1| ⊗ A

jαA




−
n−1∑

i=0

k∑

j=0

|(i+ 1)(k + 1)⟩⟨i(k + 1) + j| ⊗ I

+




p∑

j=0

|n(k + 1) + j⟩⟨n(k + 1) + j| ⊗ I −
p∑

j=1

|n(k + 1) + j⟩⟨n(k + 1) + j − 1| ⊗ I


 ,

(189)

whereas the initial state is |0⟩|b⟩. Here, the parameter n denotes the total number of time steps in
the algorithm, k denotes the Taylor truncate order of the evolution operator within each step, p
refers to the additional padding steps required to boost the success probability, with the successful
outcomes labeled by n(k + 1), . . . , n(k + 1) + p. We set p = n = Θ(αAt). Then after running the
quantum linear system solver and measuring the ancilla register of the output state, we get the
outcomes n(k + 1), . . . , n(k + 1) + p with probability at least

Ω

( ∥∥etA|b⟩
∥∥

max0≤τ≤t ∥eτA|b⟩∥

)
, (190)

which can then be boosted to unity by amplitude amplification. The resulting state has error
at most O

(
αAt
k!

)
, which implies the choice of k = O

(
log
(
αAt
ϵ

))
to achieve a target accuracy ϵ.

Meanwhile, the coefficient matrix satisfies

∥∥∥∥Cn,k,p
(
A

αA

)∥∥∥∥ = O
(√

k
)
,

∥∥∥∥C−1
n,k,p

(
A

αA

)∥∥∥∥ = O

(
max
0≤τ≤t

∥∥eτA
∥∥√kn

)
. (191)

With the quantum linear system solver [18], this method has a query complexity of

O

(
max0≤τ≤t

∥∥eτA|b⟩
∥∥

∥etA|b⟩∥ max
0≤τ≤t

∥∥eτA
∥∥αAt log

(
αAt

ϵ

)
log

(
max0≤τ≤t

∥∥eτA|b⟩
∥∥

∥etA|b⟩∥ ϵ

)
(Cost (Ob) +Cost (OA))

)
.

(192)
The state-of-the-art result [8, 32] has a slightly better query complexity of Ob by shaving off the
logarithmic factor log

(
αAt
ϵ

)
.

To improve over this result, we perform the following block preconditioning. We choose the
preconditioner based on the initial ancilla state Πcond = |0⟩⟨0| ⊗ I and set the scaling parameter
s = 1√

kn
, defining the scaling operator

S =
1√
kn

|0⟩⟨0| ⊗ I + (I − |0⟩⟨0|)⊗ I, S−1 =
√
kn|0⟩⟨0| ⊗ I + (I − |0⟩⟨0|)⊗ I. (193)
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Note in particular that our preconditioner depends only on the ancilla state, and can be imple-
mented without querying the oracle Ob. This block preconditioning increases the solution norm of
quantum linear system algorithm to

∥∥∥∥
(
SCn,k,p

(
A

αA

))
|0⟩|b⟩

∥∥∥∥ =
1

s

∥∥∥∥C−1
n,k,p

(
A

αA

)
|0⟩|b⟩

∥∥∥∥ =
√
kn

∥∥∥∥C−1
n,k,p

(
A

αA

)
|0⟩|b⟩

∥∥∥∥ , (194)

while the norm of the inverse matrix remains asymptotically unaffected

∥∥∥∥∥

(
SCn,k,p

(
A

αA

))−1
∥∥∥∥∥ ≤

√√√√
∥∥∥C−1

n,k,p

(
A
αA

)
|0⟩ ⊗ I

∥∥∥
2

s2
+

∥∥∥∥C−1
n,k,p

(
A

αA

)∥∥∥∥
2

= O

(√
kn

√
n max

0≤τ≤t

∥∥eτA
∥∥+ max

0≤τ≤t

∥∥eτA
∥∥√kn

)

= O

(
max
0≤τ≤t

∥∥eτA
∥∥√kn

)
.

(195)

Suppose that the norm of solution state of the quantum linear system solver can be estimated
to a constant multiplicative accuracy. Then, the query complexity of the initial state preparation
is bounded by

O


 max0≤τ≤t

∥∥eτA
∥∥√kn

√
kn
∥∥∥C−1

n,k,p

(
A
αA

)
|0⟩|b⟩

∥∥∥
·
√
kn
∥∥∥C−1

n,k,p

(
A
αA

)
|0⟩|b⟩

∥∥∥
√
kn

√
n ∥etA|b⟩∥


 = O

(
max0≤τ≤t

∥∥eτA
∥∥

∥etA|b⟩∥

)
. (196)

We have thus obtained:

Theorem 5 (Quantum differential equation solver with optimal initial state preparation). Let A
be a matrix such that A/αA is block encoded by OA with normalization factor αA ≥ ∥A∥. Let |b⟩
be the initial state prepared by oracle Ob. Then the quantum state

etA|b⟩
∥etA|b⟩∥ (197)

can be prepared to accuracy ϵ and success probability > 1
2 with query complexity

O

(
αexp

αexp,b
Cost (Ob)

+
αexp,b,max

αexp,b
αexpαAt log

(
αexp

αexp,b

)
log



log
(
αexp

αexp,b

)

ϵ


 log

(
αAt

ϵ

)
Cost (OA)

)
,

(198)

where αexp ≥ max0≤τ≤t
∥∥eτA

∥∥ is an upper bound on norm of the evolution operator, αexp,b,max ≥
max0≤τ≤t

∥∥eτA|b⟩
∥∥ is a norm upper bound on solution state of the differential equation, and αexp,b ≤∥∥etA|b⟩

∥∥ is a lower bound on norm of the solution state.

Remark. The query complexity quoted above follows from Theorem 2, assuming that a constant
multiplicative estimate of the solution norm is available for the linear system problem. Without
this assumption, we can obtain such an estimate using Theorem 1, with the complexity of initial

state preparation O
(
αexp

αexp,b

)
remaining the same. When αexp = O(1) as is commonly assumed by

recent work on differential equations [4, 8, 32], our complexity of initial state preparation matches
the lower bound of [20, Theorem 10].
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6.3 Quantum eigenvalue estimator

The efficient solution of the eigenvalue estimation problem underlies the quantum speedups for
factoring integers [50] and elucidating chemical reactions [33, 57]. Here, an initial state |ψ⟩ close
to an eigenvector of the input matrix A is given, and the goal is to estimate the corresponding
eigenvalue. If A is Hermitian, this can be solved using the quantum singular value estimation
algorithm with optimal query complexity [12, 22, 30]. However, the problem becomes considerably
more difficult when A is a nonnormal matrix, relevant for applications in simulating transcorrelated
quantum chemistry [42] and non-Hermitian physics [6, 7].

For presentational purposes, we assume A = SΛS−1 is diagonalizable with real spectra, and
A/αA is block encoded byOA with normalization factor αA ≥ ∥A∥. Suppose that oracleOψ|0⟩ = |ψ⟩
prepares an initial state close to an eigenstate |ψj⟩ such that A|ψj⟩ = λj |ψj⟩. Then recent work
provides a linear-system-based quantum algorithm that estimates λj [39, Theorem 3] to accuracy
ϵ and success probability > 1

2 , with query complexity

O
(αAκS

ϵ
(Cost (OA) +Cost (Oψ))

)
, (199)

where κS ≥ ∥S∥
∥∥S−1

∥∥ is an upper bound on the spectral condition number of the basis transforma-
tion. This improves over previous results [47, 48] based on differential equation solvers. A related
result is obtained in [39, Theorem 12] for eigenvalue estimation on the unit circle, which is more
recently generalized by [1]. In terms of the query complexity of OA, the complexity quoted above
exactly matches the Heisenberg scaling [23, 61] and is provably optimal for eigenvalue estimation.
However, the algorithm uses the same number of queries to the initial state, which underperforms
alternative methods [60] in this regard.

In the algorithm of [39], the eigenvalue estimation problem is solved by generating a Chebyshev
history state, which is in turn realized by solving a linear system. Specifically, we introduce

Pad(A) =

[
A11 0
A21 A22

]

=




I 0 · · · · · · · · · 0 0 · · · · · ·
− 2A
αA

I
. . .

. . .
. . .

...
...

...
...

I − 2A
αA

I
. . .

. . .
...

...
...

...

0 I −2A
αA

I
. . .

...
...

...
...

...
. . .

. . .
. . .

. . . 0
...

...
...

0 · · · 0 I − 2A
αA

I 0 · · · · · ·
0 · · · · · · 0 0 −I I 0 · · ·
0 · · · · · · · · · 0 0 −I I

. . .
...

...
...

...
...

...
. . .

. . .
. . .




,

(200)

where A11 is n-by-n and A22 is ηn-by-ηn for some nonnegative integers η and n. The inverse of
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this matrix is

Pad(A)−1 =




U0

(
A
αA

)
0 · · · 0 0 · · · · · ·

U1

(
A
αA

)
U0

(
A
αA

) . . .
...

...
...

...

...
. . .

. . . 0
...

...
...

Un−1

(
A
αA

)
· · · U1

(
A
αA

)
U0

(
A
αA

)
0 · · · · · ·

Un−1

(
A
αA

)
· · · U1

(
A
αA

)
U0

(
A
αA

)
I 0 · · ·

Un−1

(
A
αA

)
· · · U1

(
A
αA

)
U0

(
A
αA

)
I I

. . .

...
...

...
...

...
...

. . .




, (201)

with Uj Chebyshev polynomials of the second kind. Here, the coefficent matrix and its inverse
have norm bounds

∥Pad(A)∥ ≤ 4,
∥∥Pad−1(A)

∥∥ = O(nκS). (202)

For the eigenvalue estimation problem, we choose the initial state |0⟩−|2⟩√
2

|ψ⟩ and let η = 0. Then

the solution state becomes

Pad(A)−1 |0⟩−|2⟩√
2

|ψ⟩
∥∥∥Pad(A)−1 |0⟩−|2⟩√

2
|ψ⟩
∥∥∥
=

∑n−1
l=0 |l⟩T̃l

(
A
αA

)
|ψ⟩

∥∥∥
∑n−1

l=0 |l⟩T̃l

(
A
αA

)
|ψ⟩
∥∥∥
, (203)

with T̃l rescaled Chebyshev polynomials of the second kind. As long as this state is produced with
constant accuracy and n = Θ

(
αA
ϵ

)
, we can estimate the eigenvalue to accuracy ϵ. This gives the

query complexity claimed above.
We can improve the cost of initial state preparation using block preconditioning. Specifically,

we choose Πcond = |0⟩−|2⟩√
2

⟨0|−⟨2|√
2

⊗ I, s = 1√
n
, and define the scaling operator

S =
1√
n

|0⟩ − |2⟩√
2

⟨0| − ⟨2|√
2

⊗ I +

(
I − |0⟩ − |2⟩√

2

⟨0| − ⟨2|√
2

)
⊗ I,

S−1 =
√
n
|0⟩ − |2⟩√

2

⟨0| − ⟨2|√
2

⊗ I +

(
I − |0⟩ − |2⟩√

2

⟨0| − ⟨2|√
2

)
⊗ I.

(204)

Note again that our preconditioner depends only on the ancilla state, and can be implemented
without consuming queries to Oψ. After block preconditioning, the solution norm is increased
to [39, Lemma 17]

∥∥∥∥(SPad(A))−1 |0⟩ − |2⟩√
2

|ψ⟩
∥∥∥∥ =

√
n

∥∥∥∥Pad−1(A)
|0⟩ − |2⟩√

2
|ψ⟩
∥∥∥∥ = Θ

(
√
n

∥∥∥∥∥
n−1∑

l=0

|l⟩T̃l

(
A

αA

)
|ψ⟩
∥∥∥∥∥

)

= Θ


√

n

√√√√
n−1∑

l=0

T̃2
l

(
λj
αA

)
 = Θ(n),

(205)
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while the norm upper bound on the inverse matrix remains asymptotically unchanged:

∥∥∥(SPad(A))−1
∥∥∥ ≤

√√√√
∥∥∥Pad−1(A) |0⟩−|2⟩√

2
⊗ I
∥∥∥
2

s2
+
∥∥Pad−1(A)

∥∥2

= O

(
√
n

∥∥∥∥∥
n−1∑

l=0

|l⟩T̃l

(
A

αA

)∥∥∥∥∥+ nκS

)
= O(nκS).

(206)

Invoking Theorem 2, we have:

Theorem 6 (Quantum eigenvalue estimator with improved initial state preparation). Let A =
SΛS−1 be a diagonalizable matrix with real spectra and upper bound κS ≥ ∥S∥

∥∥S−1
∥∥ on the condi-

tion number, such that A/αA is block encoded by OA with normalization factor αA ≥ ∥A∥. Suppose

that oracle Oψ|0⟩ = |ψ⟩ prepares an initial state within distance ∥|ψ⟩ − |ψj⟩∥ = O
(

1
κS

)
to an

eigenstate such that A|ψj⟩ = λj |ψj⟩. Then λj can be estimate to accuracy ϵ and success probability
> 1

2 with query complexity

O
(
κSCost (Oψ) +

αAκS
ϵ

log (κS) log log (κS)Cost (OA)
)
. (207)

Remark. The query complexity quoted above follows from Theorem 2 assuming a constant multi-
plicative approximation of the solution norm is available. Without this prior knowledge, one can
use Theorem 1 to get such an estimate with the same cost of initial state preparation, while the
cost of block encoding remains the Heisenberg-limited scaling [23, 61].

When A is Hermitian, κS = 1. In this case, we only need a constant number of queries to the
initial state oracle and a constant overlap with the target eigenstate. Our result then recovers the
performance of standard quantum phase estimation. For estimating real eigenvalues, the above
result outperforms the one reported in [60]. Note that the approach of [60] works by implementing
projections onto Ker(A− µI) with different shifting values µ, assuming oracular queries to initial
states that are µ-dependent. This input model appears to be quite different from ours.

6.4 Quantum eigenvalue transformer and ground state preparator

We obtain an analogous improvement for the quantum eigenvalue transformation of nonnormal
matrices. For a diagonalizable input matrix block enocded as A/αA with normalization factor
αA ≥ ∥A∥, this means performing a polynomial transformation on the eigenvalues

A

αA
= S

Λ

αA
S−1 7→ p

(
A

αA

)
= Sp

(
Λ

αA

)
S−1, (208)

applied to an initial state |ψ⟩. This covers the special case where A is Hermitian, which is relevant
for applications including Hamiltonian simulation [38], ground state [34] and thermal state prepa-
ration [22]. More generally, efficient algorithms for the eigenvalue transformation of nonnormal
matrices can be applied to solve differential equations and prepare ground states of non-Hermitian
matrices with real spectra.

A linear-system-based quantum algorithm was recently developed to transform eigenvalues of
nonnormal matrices [39]. For a diagonalizable input matrix A = SΛS−1 with only real eigenvalues,
the previous method has query complexity

O



∥p∥max,[− 1

2
, 1
2 ]
κ2Sn∥∥∥p

(
A
αA

)
|ψ⟩
∥∥∥

log



∥p∥max,[− 1

2
, 1
2 ]
κS log(n)

∥∥∥p
(
A
αA

)
|ψ⟩
∥∥∥ ϵ


 log (n) (Cost (OA) +Cost (Oψ))


 , (209)
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where ϵ is the accuracy of the output state, κS is the condition number of the basis transformation,
p is the target polynomial with norm ∥p∥max,[− 1

2
, 1
2 ]

= maxx∈[− 1
2
, 1
2 ]
|p(x)| and n−1 is its degree. This

is achieved by inverting the coefficient matrix Pad−1(A) introduced in the previous subsection with
η = 1, which has the norm bounds ∥Pad(A)∥ ≤ 4 and

∥∥Pad−1(A)
∥∥ = O(nκS) same as before. For

the eigenvalue transformation problem, supposing that the target polynomial is represented under
the (rescaled) Chebyshev basis as p(x) =

∑n−1
j=0 β̃jT̃j(x), we choose the initial state |0⟩|β⟩|ψ⟩ where

|β⟩ = 1

α
β̃

n−1∑

k=0

(β̃k− β̃k+2)|n−1−k⟩, α
β̃
=

√√√√
n−1∑

k=0

|β̃k − β̃k+2|2 = Θ
(
∥p(cos) sin∥2,[−π,π]

)
, (210)

where ∥p(cos) sin∥2,[−π,π] =
√∫ π

−π dθ |p(cos θ) sin θ|2. Applying the quantum linear system solver

then produces the Chebyshev history state

|0⟩∑n−1
l=0 |l⟩∑n−1

k=n−1−l β̃kT̃k+l−n+1

(
A
αA

)
|ψ⟩+ |1⟩∑n−1

l=0 |l⟩∑n−1
k=0 β̃kT̃k

(
A
αA

)
|ψ⟩

√
∑n−1

l=0

∥∥∥
∑n−1

k=n−1−l β̃kT̃k+l−n+1

(
A
αA

)
|ψ⟩
∥∥∥
2
+ n

∥∥∥
∑n−1

k=0 β̃kT̃k

(
A
αA

)
|ψ⟩
∥∥∥
2

. (211)

Here, the component flagged by the ancilla state |1⟩ is desired, and the success amplitude is at least

Ω




∥∥∥p
(
A
αA

)
|ψ⟩
∥∥∥

∥p∥max,[− 1
2
, 1
2 ]
κS log(n)


 . (212)

This can be boosted close to 1 by amplitude amplification, leading to the query complexity cited
above. Note that compared to [39], we have changed the domain from [−1, 1] to

[
−1

2 ,
1
2

]
which is

without loss of generality by rescaling the input block encoding.
Once again, we can improve the query complexity of the initial state preparation using block

preconditioning. To this end, we choose Πcond = |β⟩⟨β| ⊗ I, s =
∥p∥

max,[− 1
2 ,

1
2 ]√

nα
β̃

, and define the scaling

operator

S =
∥p∥max,[− 1

2
, 1
2 ]√

nα
β̃

|0, β⟩⟨0, β| ⊗ I + (I − |0, β⟩⟨0, β|)⊗ I,

S−1 =

√
nα

β̃

∥p∥max,[− 1
2
, 1
2 ]
|0, β⟩⟨0, β| ⊗ I + (I − |0, β⟩⟨0, β|)⊗ I.

(213)

Recall that in order for this to be a valid block preconditioning, S must be invertible which further
requires 0 < s < 1. This is confirmed by the following lemma.

Lemma 9. Let p(x) be a polynomial with the expansion p(x) =
∑n−1

j=0 β̃jT̃j(x) into rescaled Cheby-
shev polynomials of the first kind. It holds

∥p∥max,[− 1
2
, 1
2 ]
<

√
n

√√√√
n−1∑

k=0

|β̃k − β̃k+2|2. (214)
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Proof. Extending the definition of coefficients by setting β̃n = β̃n+1 = · · · = 0, we have

p(x) =
∞∑

j=0

β̃jT̃j(x) =

∞∑

j=2

β̃j
Uj(x)−Uj−2(x)

2
+ β̃1T̃1(x) + β̃0T̃0(x)

=
1

2

∞∑

j=2

β̃jUj(x)−
1

2

∞∑

j=0

β̃j+2Uj(x) + β̃1T̃1(x) + β̃0T̃0(x)

=
1

2

∞∑

j=0

(
β̃j − β̃j+2

)
Uj(x)−

1

2
β̃1U1(x)−

1

2
β̃0U0(x) + β̃1T̃1(x) + β̃0T̃0(x)

=
1

2

∞∑

j=0

(
β̃j − β̃j+2

)
Uj(x) =

1

2

n−1∑

j=0

(
β̃j − β̃j+2

)
Uj(x).

(215)

Now by the Cauchy-Schwarz inequality,

|p(x)| ≤ 1

2

√√√√
n−1∑

j=0

U2
j (x)

√√√√
n−1∑

k=0

|β̃k − β̃k+2|2. (216)

We now claim that
∑n−1

j=0 U
2
j (x) ≤ 2

3n + 1 for −1
2 ≤ x ≤ 1

2 . To this end, let us introduce the

angular variable ϕ = 1
2π arccos(x) and consider

U2
n−1 (x) + · · ·+U2

0 (x) =
n−1∑

j=0

sin2(2π(j + 1)ϕ)

sin2(2πϕ)
=

1

sin2(2πϕ)

n∑

j=1

1− cos(4πjϕ)

2

=
1

sin2(2πϕ)


n

2
− 1

4

n−1∑

j=0

(
ei4πjϕ + e−i4πjϕ

)



=
1

sin2(2πϕ)

(
n

2
− 1

2

sin(2πnϕ)

sin(2πϕ)
cos((n− 1)2πϕ)

)
.

(217)

By our assumption,
√
3
2 ≤ sin(2πϕ) ≤ 1 and hence

n

2
−

√
3

3
≤ U2

n−1 (x) + · · ·+U2
0 (x) ≤

4

3

(
n

2
+

√
3

3

)
. (218)

Similar as before, our preconditioner is defined by the initial ancilla state, and its implementation
uses no query to Oψ. After block preconditioning, the solution norm becomes

∥∥∥(SPad(A))−1 |0⟩|β⟩|ψ⟩
∥∥∥ =

√
nα

β̃

∥p∥max,[− 1
2
, 1
2 ]

∥∥Pad−1(A)|0⟩|β⟩|ψ⟩
∥∥ , (219)

whereas the upper bound on the norm of inverse matrix is asymptotically:

∥∥∥(SPad(A))−1
∥∥∥ ≤

√∥∥Pad−1(A)|0, β⟩ ⊗ I
∥∥2

s2
+
∥∥Pad−1(A)

∥∥2

= O




√
nα

β̃

∥p∥max,[− 1
2
, 1
2 ]

√
nmaxl

∥∥∥
∑n−1

k=l β̃kT̃k−l

(
A
αA

)∥∥∥
α
β̃

+ nκS




= O (nκS log(n)) .

(220)
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This is larger by a factor of log(n) in the worst case, but one can potentially remove this logarithmic
factor when running the algorithm over an average input.

Suppose that the norm of solution state from the quantum linear system solver (Theorem 2)
can be estimated to a constant multiplicative accuracy. Then the query complexity of the initial
state oracle is bounded by

O




nκS log(n)√
nα

β̃

∥p∥
max,[− 1

2 ,
1
2 ]

∥∥Pad−1(A)|0⟩|β⟩|ψ⟩
∥∥

√
nα

β̃

∥p∥
max,[− 1

2 ,
1
2 ]

∥∥Pad−1(A)|0⟩|β⟩|ψ⟩
∥∥

√
nα

β̃

∥p∥
max,[− 1

2 ,
1
2 ]

√
n

α
β̃

∥∥∥p
(
A
αA

)
|ψ⟩
∥∥∥




= O



∥p∥max,[− 1

2
, 1
2 ]
κS log(n)

∥∥∥p
(
A
αA

)
|ψ⟩
∥∥∥


 .

(221)

We thus obtain:

Theorem 7 (Quantum eigenvalue transformer with improved initial state preparation). Let A =
SΛS−1 be a diagonalizable matrix with real spectra and upper bound κS ≥ ∥S∥

∥∥S−1
∥∥ on the con-

dition number, such that A/αA is block encoded by OA with normalization factor αA ≥ ∥A∥. Let
Oψ|0⟩ = |ψ⟩ be the oracle preparing the initial state, and p(x) =

∑n−1
k=0 β̃kT̃k(x) =

∑n−1
k=0 βkTk(x)

be the Chebyshev expansion of a degree-(n− 1) polynomial p. Then, the quantum state

p
(
A
αA

)
|ψ⟩

∥∥∥p
(
A
αA

)
|ψ⟩
∥∥∥

(222)

can be prepared with accuracy ϵ and success probability > 1
2 with query complexity

O

(
∥p∥max,[− 1

2
, 1
2
] κS log (n)

αp,ψ
Cost (Oψ)

+
∥p∥max,[− 1

2
, 1
2
] κ

2
Sn log (n)

αp,ψ
log

(
∥p∥max,[− 1

2
, 1
2
] κS log(n)

αp,ψ

)
log

 log

( ∥p∥
max,[− 1

2
, 1
2
]
κS log(n)

αp,ψ

)
ϵ

Cost (OA)

)
,

(223)

where αp,ψ ≤
∥∥∥p
(
A
αA

)
|ψ⟩
∥∥∥ is a norm lower bound on the transformed state.

As an immediate application, we also obtain an improved quantum algorithm for ground state
preparation. In the case where the input operator is a Hermitian Hamiltonian, this problem has
been extensively studied by previous work [21, 43], and can be solved near optimally on a quantum
computer [34]. Here, we consider the general case where inputs are non-normal matrices with
real eigenvalues whose ground states are still well defined, which are relevant to applications in
non-Hermitian physics and transcorrelated quantum chemistry. Specifically, let A = SΛS−1 be a
diagonalizable matrix with only real eigenvalues and an upper bound κS on the condition number
of its basis transformation, such that A/αA is block encoded by oracle OA with normalization factor
αA. Suppose that λ0 is the smallest eigenvalue of A with the corresponding eigenstate |ψ0⟩, which
is separated from the next eigenvalue λ1:

λ0 ≤ −δA
2
< 0 <

δA
2

≤ λ1 (224)
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for some spectral gap δA > 0. Then our goal is to prepare a quantum state that ϵ-approximates the
ground state |ψ0⟩ up to a global phase, given an initial state |ψ⟩ = γ0|ψ0⟩+

∑d−1
l=1 γl|ψl⟩ prepared

by oracle Oψ.
The best previous quantum ground state preparation algorithm proceeds by implementing a

degree

n = O

(
αA
δA

log

(
κS
|γ0|ϵ

))
. (225)

polynomial using quantum eigenvalue transformer [39, Theorem 8], which leads to the query com-
plexity

O

(
κ2S
|γ0|

αA
δA

log2
(
κS
|γ0|ϵ

)
(Cost (OA) +Cost (Oψ))

)
. (226)

Using block preconditioning and our quantum linear system solver with optimal initial state prepa-
ration, we improve this to:

Theorem 8 (Quantum ground state preparator with improved initial state preparation). Let
A = SΛS−1 be a diagonalizable matrix with real spectra and upper bound κS ≥ ∥S∥

∥∥S−1
∥∥ on

the condition number, such that A/αA is block encoded by OA with normalization factor αA ≥ ∥A∥.
Let eigenvalues of A be ordered nondecreasingly, with λ0 the smallest one corresponding to eigenstate
|ψ0⟩, satisfying the condition

λ0 ≤ −δA
2
< 0 <

δA
2

≤ λ1 (227)

for some spectral gap δA > 0. Let Oψ|0⟩ = |ψ⟩ be the oracle preparing the initial state with the
eigenbasis expansion

|ψ⟩ = γ0|ψ0⟩+
d−1∑

l=1

γl|ψl⟩. (228)

Then, the ground state |ψ0⟩ can be produced with accuracy ϵ, success probability > 1
2 and global

phase factor γ0/ |γ0|, with query complexity

O

(
κS
|γ0|

log

(
αA
δA

log

(
κS
|γ0|ϵ

))
Cost (Oψ) +

κ2S
|γ0|

αA
δA

polylog

(
αA
δA

log

(
κS
|γ0|ϵ

))
Cost (OA)

)
.

(229)

6.5 Block encoded quantum eigenvalue transformer

We report another improvement to the block-encoding version of the quantum eigenvalue trans-
formation algorithm. This is similar to the application from the previous subsection, except we
construct the block encoding of the transformed matrix, rather than applying it to an initial state,
making it more versatile when quantum eigenvalue transformation is used as a subroutine in con-
structing other quantum algorithms.

Specifically, we set η = 1 and use Lemma 8 to construct a block encoding of

Pad−1(A)

2αPad−1(A)

(230)

with a normalization factor αPad−1(A) = O (nκS). Together with the preparation of initial state

|0⟩|β⟩ and unpreparation of |1⟩ 1√
n

∑n−1
k=0 |k⟩ where |β⟩ is given by Eq. (210), we obtain the block
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encoding (
⟨1| 1√

n

n−1∑

k=0

⟨k| ⊗ I

)
Pad−1(A)

2αPad−1(A)

(|0⟩|β⟩ ⊗ I) =
p
(
A
αA

)

αp,pre
(231)

with

αp,pre =
αPad(A)−1α

β̃√
n

= O
(√

nκSαβ̃

)
, (232)

Therefore, we have block encoded the target polynomial but with a larger normalization factor. In
prior art [39], further amplification is performed to reduce the normalization factor, giving

p
(
A
αA

)

2
∥∥∥p
(
A
αA

)∥∥∥
. (233)

The overall query complexity is then

O


∥p(cos) sin∥2,[−π,π] n

3
2κ2S∥∥∥p

(
A
αA

)∥∥∥
log
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∥p(cos) sin∥2,[−π,π]

√
nκS∥∥∥p

(
A
αA

)∥∥∥ ϵ


 log

(
1

ϵ

)
 . (234)

We improve this block encoding cost using the block preconditioning technique. Specifically,
we define the scaling operator

S =
∥p∥max,[− 1

2
, 1
2 ]√

nα
β̃

|0, β⟩⟨0, β| ⊗ I + (I − |0, β⟩⟨0, β|)⊗ I,

S−1 =

√
nα

β̃

∥p∥max,[− 1
2
, 1
2 ]
|0, β⟩⟨0, β| ⊗ I + (I − |0, β⟩⟨0, β|)⊗ I

(235)

same as in the previous subsection. Recall that this does not increase the asymptotic scaling of the
condition number. However, the block encoding now becomes

(
⟨1| 1√

n

n−1∑

k=0

⟨k| ⊗ I

)
Pad−1(A)S−1

2αPad−1(A)

(|0⟩|β⟩ ⊗ I) =

√
nα

β̃

∥p∥max,[− 1
2
, 1
2 ]

p
(
A
αA

)

αp,pre
=
p
(
A
αA

)

αp,cond
(236)

for

αp,cond = O

(
√
nκSαβ̃

∥p∥max,[− 1
2
, 1
2 ]√

nα
β̃

)
= O

(
∥p∥max,[− 1

2
, 1
2 ]
κS

)
. (237)

So the query complexity to the block encoding is improved from O(n1.5) to O(n).

Theorem 9 (Block encoded quantum eigenvalue transformer with linear degree cost). Let A =
SΛS−1 be a diagonalizable matrix with real spectra and upper bound κS ≥ ∥S∥

∥∥S−1
∥∥ on the con-

dition number, such that A/αA is block encoded by OA with normalization factor αA ≥ ∥A∥. Let
p(x) =

∑n−1
k=0 β̃kT̃k(x) =

∑n−1
k=0 βkTk(x) be the Chebyshev expansion of a degree-(n− 1) polynomial

p. Then for any αp ≥
∥∥∥p
(
A
αA

)∥∥∥, the operator

p
(
A
αA

)

2αp
(238)
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can be block encoded with accuracy ϵ using

O

(∥p∥max,[− 1
2
, 1
2 ]
nκ2S

αp
log

(∥p∥max,[− 1
2
, 1
2 ]
κS

αpϵ

)
log

(
1

ϵ

))
(239)

queries to OA.

7 Discussion

In this work, we have developed a quantum linear system algorithm that achieves an optimal
query complexity of the initial state preparation, while maintaining a nearly optimal cost scaling
of the coefficient block encoding. This outperforms recent linear system solvers that make optimal
uses of one resource, but far too many queries to the other. Our algorithm employs a nested
amplitude amplification with a deterministic amplification schedule, which substantially simplifies
prior approaches based on VTAA while improving their asymptotic query complexity. We also
present a quantum algorithm that produces a constant multiplicative approximation of norm of the
solution state, again using optimal number of queries to the initial state oracle, improving over all
previous approaches where finding such an estimate incurs polylogarithmic overhead.

Our state preparation cost scales strictly linear in the inverse success amplitude O
(

1√
psucc

)
.

We further develop a block preconditioning technique that boosts psucc for practical applications of
quantum linear system solvers. As a result, we obtain quantum algorithms for solving differential
equations, for preparing ground states of non-Hermitian operators, and for processing eigenvalues
of non-normal matrices, all with reduced query complexity of the initial state preparation, nearly
matching or outperforming alternative methods for the same tasks. Of independent interest, our
block preconditioning technique also allows for the improvement of other scaling parameters. We
present an extremely simple quantum linear system solver with an optimal block encoding cost by
choosing the initial state as the preconditioner. We also give a preconditioned quantum eigenvalue
transformer that implements a degree-n polynomial usingO(n) queries to the block encoding oracle,
whereas the best prior scaling was O(n1.5).

We have examined variable time amplitude amplifications with tunable threshold values that
capture the power of generic nested amplitude amplifications. We have shown that Tunable VTAA

makes O
(

1√
psucc

)
queries to the initial state matching the performance of standard amplitude

amplification, while only contains at most O
(
log
(

1√
psucc

))
nontrivial amplification stages allowing

majority of the algorithms to be pre-merged. Specialized to the quantum linear system problem,
we have designed a discretized inverse state which can be prepared by Tunable VTAA with a
complexity scaling with ℓ2-norm of the input costs. We show that this scheme translates naturally
to a deterministic amplification schedule, avoiding the significant setup overhead of prior VTAA
approaches. However, we prove that one can in principle optimize the amplification thresholds
so that the cost of Tunable VTAA attains ℓ 2

3
-quasinorm of the input costs. This improves over

the ℓ1-norm result of Ambainis and the more commonly used ℓ2-norm result. With more prior
knowledge about the target linear system, this result can be utilized to further improve the query
complexity of quantum solvers. For instance, consider the coefficient matrix

A =




1
3

1
9

. . .
1
3m


 (240)
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and initial state |b⟩ = |m − l − 1⟩, such that A|b⟩ = 1
3m−l |b⟩. Here A can be block encoded

with normalization factor αA = 1, whereas
∥∥A−1

∥∥ ≤ 3m = αA−1 = κ. Meanwhile, we have
∥∥A−1|b⟩

∥∥ = 3m−l, so
√
psucc =

∥A−1|b⟩∥
αA−1

= 1
3l
. Choosing a non-uniform schedule of GPE accuracies

ϵgpe,j =
ϵ

2m−j+2 for j = m− l + 1, . . . ,m and ϵgpe,j =
ϵ

2m−l−j+2 for j = 1, . . . ,m− l, one can attain

the improved query complexity O
(

1√
psucc

Cost(Ob) + κ log
(
1
ϵ

)
Cost (OA)

)
. It would be interesting

to identify more algorithmic applications where the ℓ 2
3
-quasinorm can be tightly bounded without

introducing additional scaling factors.
Related to the above discussion, an obvious open question is whether it is possible for a quantum

linear system algorithm to achieve the query complexity

O

(
1√
psucc

Cost(Ob) + κ log

(
1

ϵ

)
Cost (OA)

)
(241)

for a generic linear system problem. From an algorithmic perspective, our Tunable VTAA matches
the above query scaling of Ob and, theoretically, the cost of OA scales strictly linear with the ℓ 2

3
-

quasinorm of input costs, although upper bounding it in terms of κ without logarithmic overhead
can be difficult in general. On the other hand, there may also be room to further improve the lower
bound when one considers the oracles Ob and OA simultaneously.

We have mainly focused on applications of quantum linear system solvers where the target
outputs are quantum states or block encoded operators. In this case, we have introduced a scaling
matrix such that, when it is inverted from the right side of coefficient matrix, the success amplitude
can be boosted up and complexity of the algorithm can be reduced. However, there also exist
other linear-system related problems such as computing Green’s functions, where the goal is to
estimate the expectation value of an observable. We leave it as a subject for future work to explore
whether algorithms for such problems can be improved by implementing generalized versions of
block preconditioning on both sides of the coefficient matrix.

A number of other questions call for more investigations. Our preconditioned quantum linear
system algorithm has an optimal query complexity of block encoding and appears to be conceptually
simpler than recent optimal methods based on the discrete adiabatic evolution and kernel reflection.
It may be fruitful to assess the resources required to implement this algorithm, for both near-term
and fault-tolerant quantum devices. It is also possible to improve the constant prefactor of the
complexity of VTAA: for instance, one may use the trigonometric identity sin(3θ)

3 sin(θ) = 1 − 4
3 sin

2(θ)
as opposed to its bounds when the amplification step number is exactly 3, or one may replace the
first m − l stages of GPE by a single GPE covering a larger interval of eigenvalues (although this
modification could significantly increase the success probability and result in over amplification).
Our solution norm estimation algorithm maintains the optimal scaling of query cost of Ob, but
introduces additional logarithmic factors to the complexity of OA, which may be improved by
solving an augmented linear system similar to [19]. Finally, it would be of interest to explore other
algorithmic applications of quantum linear system solvers beyond those studied here.
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A Axiomatic definition of variable time amplification

In this appendix, we collect mathematical results useful for formulating the axiomatic definition of
variable time amplification in Section 2.2. We assume throughout this appendix that an underlying
Hilbert space is fixed, on which all operators act. We denote the complementary operator of X by
X = I −X.

A.1 Clock projections

Lemma 10 (Partially ordered projections). Let Π2
1 = Π1 = Π†

1 and Π2
2 = Π2 = Π†

2 be orthogonal
projections. The following statements are all equivalent:

1. Im(Π1) ⊆ Im(Π2).

2. (a) Π2Π1 = Π1.

(b) Π1Π2 = Π1.

(c) (Π2 −Π1)
2 = Π2 −Π1 is an orthogonal projection.

(d) Π1Π2Π1 = Π1.

3. (a) Π1 ≤ Π2 as Hermitian operators.

(b) ∥Π1|ψ⟩∥ ≤ ∥Π2|ψ⟩∥ for all states |ψ⟩.
Proof. We begin with the equivalence of 3(a) and 3(b) which follows from a direct verification:

∥Π1|ψ⟩∥ ≤ ∥Π2|ψ⟩∥ ⇔ ∥Π1|ψ⟩∥2 ≤ ∥Π2|ψ⟩∥2 ⇔ ⟨ψ|Π†
1Π1|ψ⟩ ≤ ⟨ψ|Π†

2Π2|ψ⟩
⇔ ⟨ψ|Π1|ψ⟩ ≤ ⟨ψ|Π2|ψ⟩ ⇔ Π1 ≤ Π2.

(242)

The equivalence of 2(a) and 2(b) is also immediate:

Π1 = Π2Π1 ⇔ Π†
1 = (Π2Π1)

† = Π†
1Π

†
2 ⇔ Π1 = Π1Π2. (243)

Assuming 2(b) (and hence 2(a)) holds, 2(c) follows from the calculation

(Π2 −Π1)
2 = Π2

2 +Π2
1 −Π1Π2 −Π2Π1 = Π2 +Π1 −Π1 −Π1 = Π2 −Π1. (244)

Now if 2(c) is true, we have

Π2 +Π1 −Π1Π2 −Π2Π1 = (Π2 −Π1)
2 = Π2 −Π1

⇔ 2Π1 = Π1Π2 +Π2Π1 ⇒ Π1 = Π1Π2Π1,
(245)

where in the last step we perform Π1 on both sides of the operators. This proves 2(d).
The implication 2(d) ⇒ 2(a) can be established by a trace argument. Note that

Tr ((I −Π2)Π1) = Tr (Π1 −Π2Π1) = Tr (Π1 −Π1Π2Π1) = 0, (246)

where the second equality follows from cyclic property of the trace function. Since I − Π2 and Π1

are both positive semidefinite, this necessarily means that (I − Π2)Π1 = 0 which is equivalent to
2(a).

Suppose that Im(Π1) ⊆ Im(Π2). For any state |ψ⟩, we have Π1|ψ⟩ ∈ Im(Π1) ⊆ Im(Π2), which
gives Π2Π1|ψ⟩ = Π1|ψ⟩ and thus Π1 = Π2Π1. This shows 1 ⇒ 2(a). The implication 2(c) ⇒ 3(a)
is trivial. Finally, assume that 3(b) is true. For any |ψ⟩ ∈ Ker(Π2), we have 0 ≤ ∥Π1|ψ⟩∥ ≤
∥Π2|ψ⟩∥ = 0, which forces ∥Π1|ψ⟩∥ = 0 and hence Π1|ψ⟩ = 0. This means Ker(Π2) ⊆ Ker(Π1),
which is equivalent to Claim 1 after taking the orthogonal complement.
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The above list can be expanded to include other equivalent characterizations, but this is not
needed for our work. See [29, Section 2.5] and [31, Section 9.6] for further discussions about the
partial ordering of orthogonal projections.

Proposition 11. Let {Πj}mj=0 be orthogonal projections partially ordered as 0 = Π0 ≤ Π1 ≤ · · · ≤
Πm = I. Then, we have I = Π0 ≥ Π1 ≥ · · · ≥ Πm = 0 and

Πj = ΠkΠj = ΠjΠk, Πk = Πj ·Πk = Πk ·Πj , 0 ≤ j ≤ k ≤ m, (247)

whereas Πk −Πj are all orthogonal projections.

A.2 Flag projections

Proposition 12. Let {Πj}mj=0 be orthogonal projections partially ordered as 0 = Π0 ≤ Π1 ≤ · · · ≤
Πm = I. Let Πb be an orthogonal projection commuting with all Πj: ΠbΠj = ΠjΠb for j = 0, . . . ,m.
Then, the following two resolutions of identity hold

I =
m∑

j=1

(Πj −Πj−1) = Πb +Πb, (248)

where all {Πj−Πj−1}mj=1 and {Πb,Πb} are orthogonal projections and pairwise commute. Moreover,
we have

0 = Π0Πb ≤ Π1Πb ≤ · · · ≤ ΠmΠb = Πb, I = Π0Πb ≥ Π1Πb ≥ · · · ≥ ΠmΠb = Πb, (249)

with

ΠjΠb = ΠkΠb ·ΠjΠb = ΠjΠb ·ΠkΠb, ΠkΠb = ΠjΠb ·ΠkΠb = ΠkΠb ·ΠjΠb, 0 ≤ j ≤ k ≤ m.
(250)

The above proposition shows that the two sets of orthogonal projections {Πj − Πj−1}mj=1 and
{Πb, I − Πb} are complete and pairwise commute, so they can be simultaneously measured in a
quantum computation. We tabulate the meaning of different outcomes from such a simultaneous
measurement in Table 3. Note that logical operations correspond directly to arithmetics of the
orthogonal projections. For instance, the statement “the algorithm does not fail at stage j” is
logically equivalent to “the algorithm succeeds before or at stage j, or it is still running”, which
can be represented in terms of operators as

ΠjΠb = I −ΠjΠb = Πj(I −Πb) + (I −Πj) = ΠjΠb +Πj . (251)

A.3 Input algorithms

Lemma 13 (Controlled unitaries). Let U †U = UU † = I be a unitary operator and Π2 = Π = Π†

be an orthogonal projection. The following statements are all equivalent:

1. (a) UΠ = Π.

(b) ΠU = Π.

(c) ΠUΠ = Π.

2. U = Π+ (I −Π)U(I −Π).
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Projection Meaning of the image space

Πj Algorithm stops before or at stage j

ΠjΠb Algorithm succeeds before or at stage j
ΠjΠb Algorithm fails before or at stage j

Πj −Πj−1 Algorithm stops exactly at stage j

(Πj −Πj−1)Πb Algorithm succeeds exactly at stage j
(Πj −Πj−1)Πb Algorithm fails exactly at stage j

Πj Algorithm is still running at stage j

ΠjΠb Algorithm does not succeed at stage j

ΠjΠb Algorithm does not fail at stage j

Table 3: Orthogonal projections and meaning of their image spaces in the description of variable time
algorithms.

Proof. We start with the equivalence 1(a) ⇔ 1(b) which follows from a direct verification

UΠ = Π ⇔ ΠU † = Π ⇔ Π = ΠU. (252)

Now assuming either 1(a) or 1(b), proving 1(c) is trivial.
The implication 1(c) ⇒ 1(a) can be established by a trace argument. Note that

Tr
(
Π(U − I)†(U − I)Π

)
= Tr

(
Π
(
2I − U − U †

)
Π
)
= Tr

(
2Π−ΠUΠ− (ΠUΠ)†

)

= Tr (2Π−Π−Π) = 0.
(253)

This means that (U − I)Π = 0, which is equivalent to 1(a).
Finally, if 1(a) (hence also 1(b) and 1(c)) is true,

U = (Π + (I −Π))U (Π + (I −Π))

= ΠUΠ+ΠU(I −Π) + (I −Π)UΠ+ (I −Π)U(I −Π)

= Π+Π(I −Π) + (I −Π)Π + (I −Π)UΠ+ (I −Π)U(I −Π)

= Π+ (I −Π)U(I −Π),

(254)

which proves Claim 2. The reverse direction follows from a direct calculation.

Proposition 14. Let {Πj}mj=0 be orthogonal projections partially ordered as 0 = Π0 ≤ Π1 ≤ · · · ≤
Πm = I. Let Πb be an orthogonal projection commuting with all Πj: ΠbΠj = ΠjΠb for j = 0, . . . ,m.
Let Aj be unitaries such that AjΠj−1 = Πj−1 for all j = 1, . . . ,m, and A0 = I. Then,

AjΠl = Πl = ΠlAj , AjΠlΠb = ΠlΠbAj ,

AjΠl = Πl = ΠlAj , AjΠlΠb = ΠlΠbAj , 0 ≤ l < j ≤ m.
(255)

Moreover, for any quantum state |ψ⟩,
∥∥ΠjΠb|ψ⟩

∥∥ =
∥∥ΠjΠbAk · · ·Aj+1|ψ⟩

∥∥ , 0 ≤ j ≤ k ≤ m, (256)

and for any state |ψ0⟩,

1 =
∥∥Π0Πb|ψ0⟩

∥∥ ≥
∥∥Π1ΠbA1|ψ0⟩

∥∥ ≥ · · · ≥
∥∥ΠmΠbAk · · ·A1|ψ0⟩

∥∥ =
∥∥ΠbAm · · ·A1|ψ0⟩

∥∥ . (257)
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Proof. We will only prove AjΠl = Πl = ΠlAj and AjΠlΠb = ΠlΠbAj as verifications of other
operator identities proceed in a similar way. They follow from

AjΠl = AjΠj−1Πl = Πj−1Πl = Πl = ΠlΠj−1 = ΠlΠj−1Aj = ΠlAj (258)

and

AjΠlΠb = Aj(1−ΠlΠb) = Aj −ΠlΠb = Aj −ΠbΠl = (1−ΠbΠl)Aj = ΠlΠbAj . (259)

The norm identity then follows directly as
∥∥ΠjΠb|ψ⟩

∥∥ =
∥∥Ak · · ·Aj+1ΠjΠb|ψ⟩

∥∥ =
∥∥ΠjΠbAk · · ·Aj+1|ψ⟩

∥∥ . (260)

Using the above identity, the claim about monotonicity is established:
∥∥ΠjΠbAj · · ·A1|ψ0⟩

∥∥ =
∥∥ΠjΠbAm · · ·A1|ψ0⟩

∥∥
≥
∥∥Πj+1ΠbAm · · ·A1|ψ0⟩

∥∥ =
∥∥Πj+1ΠbAj+1 · · ·A1|ψ0⟩

∥∥ .
(261)

A.4 Amplified algorithms

Proposition 15. Let {Πj}mj=0 be orthogonal projections partially ordered as 0 = Π0 ≤ Π1 ≤ · · · ≤
Πm = I. Let Πb be an orthogonal projection commuting with all Πj: ΠbΠj = ΠjΠb for j = 0, . . . ,m.

Let Aj be unitaries such that AjΠj−1 = Πj−1 for all j = 1, . . . ,m, and A0 = I. Finally, let Ãj be

unitaries such that
ΠjΠbÃj |ψ0⟩
∥ΠjΠbÃj |ψ0⟩∥ =

ΠjΠbAjÃj−1|ψ0⟩
∥ΠjΠbAjÃj−1|ψ0⟩∥ for all j = 1, . . . ,m, and Ã0 = I. Then, for

any quantum state |ψ0⟩,

ΠkΠbAk · · ·Aj+1Ãj |ψ0⟩∥∥∥ΠkΠbAk · · ·Aj+1Ãj |ψ0⟩
∥∥∥
=

ΠkΠbAk · · ·Al+1Ãl|ψ0⟩∥∥∥ΠkΠbAk · · ·Al+1Ãl|ψ0⟩
∥∥∥
, 0 ≤ l, j ≤ k ≤ m, (262)

and
∥∥∥ΠhΠbAh · · ·Aj+1Ãj |ψ0⟩

∥∥∥
∥∥∥ΠkΠbAk · · ·Aj+1Ãj |ψ0⟩

∥∥∥
=

∥∥∥ΠhΠbAh · · ·Al+1Ãl|ψ0⟩
∥∥∥

∥∥∥ΠkΠbAk · · ·Al+1Ãl|ψ0⟩
∥∥∥
, 0 ≤ l, j ≤ k, h ≤ m. (263)

Proof. By exchanging the two sides of both equations and taking reciprocal of the second one, we
may assume without loss of generality that 0 ≤ l ≤ j ≤ k ≤ h ≤ m. Recall that the defining
property of Ãj can be succinctly represented as ΠjΠbÃj |ψ0⟩ ∝ ΠjΠbAjÃj−1|ψ0⟩. We then have

ΠjΠbÃj |ψ0⟩ ∝ ΠjΠbAjÃj−1|ψ0⟩ = ΠjΠb ·Πj−1ΠbAjÃj−1|ψ0⟩ = ΠjΠbAjΠj−1ΠbÃj−1|ψ0⟩
∝ ΠjΠbAjΠj−1ΠbAj−1Ãj−2|ψ0⟩ ∝ · · ·
∝ ΠjΠbAj · · ·Πl+1ΠbAl+1ΠlΠbÃl|ψ0⟩ = ΠjΠb · · ·Πl+1ΠbAj · · ·Al+1Ãl|ψ0⟩
= ΠjΠbAj · · ·Al+1Ãl|ψ0⟩,

(264)

which proves the first claim through

ΠkΠbAk · · ·Aj+1Ãj |ψ0⟩ = ΠkΠbAk · · ·Aj+1ΠjΠbÃj |ψ0⟩
∝ ΠkΠbAk · · ·Aj+1ΠjΠbAj · · ·Al+1Ãl|ψ0⟩ = ΠkΠbAk · · ·Al+1Ãl|ψ0⟩.

(265)
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As for the second claim, we use the first one to rewrite

ΠhΠbAh · · ·Aj+1Ãj |ψ0⟩∥∥∥ΠkΠbAk · · ·Aj+1Ãj |ψ0⟩
∥∥∥
= ΠhΠbAh · · ·Ak+1

ΠkΠbAk · · ·Aj+1Ãj |ψ0⟩∥∥∥ΠkΠbAk · · ·Aj+1Ãj |ψ0⟩
∥∥∥

= ΠhΠbAh · · ·Ak+1
ΠkΠbAk · · ·Al+1Ãl|ψ0⟩∥∥∥ΠkΠbAk · · ·Al+1Ãl|ψ0⟩

∥∥∥

=
ΠhΠbAh · · ·Al+1Ãl|ψ0⟩∥∥∥ΠkΠbAk · · ·Al+1Ãl|ψ0⟩

∥∥∥
.

(266)

The claim is then justified by taking the norm on both sides of the equation.

B Tight bounds on the Dirichlet kernel

In this appendix, we prove the following bounds useful for analyzing the loss factor of amplitude
amplification in Section 3.1. Up to a change of variables, they are essentially bounds on the Dirichlet
kernel that arises in the Fourier analysis.

Proposition 16 (Tight bounds on the Dirichlet kernel). For any integer ρ ≥ 3 and real number
θ ≥ 0 such that 0 ≤ ρθ ≤ π

2 , we have

1− 1

6
ρ2 sin2(θ) ≤ sin(ρθ)

ρ sin(θ)
≤ 1− 4π − 8

π3
ρ2 sin2(θ). (267)

The constant factors are tight in the sense that

1

6
= inf

{
c > 0

∣∣∣∣ 1− cρ2 sin2(θ) ≤ sin(ρθ)

ρ sin(θ)
, 0 ≤ ρθ ≤ π

2

}
,

4π − 8

π3
= sup

{
c > 0

∣∣∣∣
sin(ρθ)

ρ sin(θ)
≤ 1− cρ2 sin2(θ), 0 ≤ ρθ ≤ π

2

}
.

(268)

In particular, when ρ = 3,
sin(3θ)

3 sin(θ)
= 1− 4

3
sin2(θ). (269)

B.1 Proof of lower bound

Let us consider the lower bound first. We start by reorganizing it as

(
1− 1

6
ρ2 sin2(θ)

)
?
≤ sin(ρθ)

ρ sin(θ)
⇔ ρ sin(θ)− sin(ρθ)

ρ3 sin3(θ)

?
≤ 1

6
. (270)

Note that

lim
θ→0

ρ sin(θ)− sin(ρθ)

ρ3 sin3(θ)
= lim

θ→0

−2r+1
6 θ3 + ρ3

6 θ
3

ρ3θ3
=

1

6
− 1

6ρ2
↗ 1

6
, (271)

which shows that the lower bound is tight. So it remains to prove that the function on the left
hand side is monotonically decreasing over 0 ≤ θ ≤ π

2ρ .
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To this end, we differentiate it with respect to θ
(
ρ sin(θ)− sin(ρθ)

ρ3 sin3(θ)

)′ ?
≤ 0, (272)

which simplifies to

3 sin(ρθ) cos(θ)
?
≤ 2ρ sin(θ) cos(θ) + ρ sin(θ) cos(ρθ). (273)

Using the trigonometric inequalities

θ − θ3

6
+

θ5

120
− θ7

5040
≤ sin(θ) ≤ θ − θ3

6
+

θ5

120
,

1− θ2

2
+
θ4

24
− θ6

720
≤ cos(θ) ≤ 1− θ2

2
+
θ4

24
,

(274)

justified via Taylor’s theorem with Lagrange’s remainder, we want

3

(
ρθ − ρ3θ3

6
+
ρ5θ5

120

)(
1− θ2

2
+
θ4

24

)
?
≤ 2ρ

(
θ − θ3

6
+

θ5

120
− θ7

5040

)(
1− θ2

2
+
θ4

24
− θ6

720

)

+ ρ

(
θ − θ3

6
+

θ5

120
− θ7

5040

)(
1− ρ2θ2

2
+
ρ4θ4

24
− ρ6θ6

720

)

(275)
or equivalently

3

(
1− ρ2θ2

6
+
ρ4θ4

120

)(
1− θ2

2
+
θ4

24

)
?
≤ 2

(
1− θ2

6
+

θ4

120
− θ6

5040

)(
1− θ2

2
+
θ4

24
− θ6

720

)

+

(
1− θ2

6
+

θ4

120
− θ6

5040

)(
1− ρ2θ2

2
+
ρ4θ4

24
− ρ6θ6

720

)
.

(276)
The left hand side of the above equation expands to

3 +
−ρ2 − 3

2
θ2 +

ρ4 + 10ρ2 + 5

40
θ4 +

−ρ2(3ρ2 + 5)

240
θ6 +

ρ4

960
θ8, (277)

whereas the right hand side expands to

3 +
−ρ2 − 3

2
θ2 +

5ρ4 + 10ρ2 + 33

120
θ4

+
−7ρ6 − 35ρ4 − 21ρ2 − 129

5040
θ6 +

14ρ6 + 21ρ4 + 6ρ2 + 82

60480
θ8

+
−7ρ6 − 5ρ4 − 24

604800
θ10 +

ρ6 + 2

3628800
θ12.

(278)

It thus suffices to show that

ρ4 + 10ρ2 + 5

40
θ4 +

ρ4

960
θ8

?
≤ 5ρ4 + 10ρ2 + 33

120
θ4

+
−7ρ6 − 35ρ4 − 21ρ2 − 129

5040
θ6 +

−7ρ6 − 5ρ4 − 24

604800
θ10.

(279)

Note that θ2 ≤ π2

4ρ2
< 5

2ρ2
. This upper bounds the left hand side of Eq. (279) by

(
ρ4

40
+
ρ2

4
+

101

768

)
θ4. (280)
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Meanwhile, using θ2 < 5
2ρ2

≤ 5
32 for ρ ≥ 4, we lower bound the right hand side of Eq. (279) by

5ρ4 + 10ρ2 + 33

120
θ4 +

−7ρ6 − 35ρ4 − 21ρ2 − 129

5040
θ6 +

−7 · 25
4 ρ

2 − 5 · 25
4 − 24 · 25

1024

604800
θ6

≥ 5ρ4 + 10ρ2 + 33

120
θ4 +

−8ρ6 − 36ρ4 − 22ρ2 − 130

5040
θ6

≥ 5ρ4 + 10ρ2 + 33

120
θ4 +

−8 · 5
2ρ

4 − 36 · 5
2ρ

2 − 22 · 5
2 − 130 · 5

32

5040
θ4

≥ 190ρ4 + 330ρ2 + 1331− 130 · 5
32

5040
θ4 ≥ 190ρ4 + 330ρ2 + 1310

5040
θ4.

(281)

We thus want to prove that

ρ4

40
+
ρ2

4
+

101

768

?
≤ 19ρ4 + 33ρ2 + 131

504
(282)

which can be directly verified to hold for ρ ≥ 4.

B.2 Proof of upper bound

Recall that in the proof of lower bound, we have actually shown that when ρ ≥ 4, ρ sin(θ)−sin(ρθ)

ρ3 sin3(θ)

monotonically decreases as a function of θ over 0 ≤ θ ≤ π
2ρ . Hence,

ρ sin(θ)− sin(ρθ)

ρ3 sin3(θ)
≥
ρ sin

(
π
2ρ

)
− 1

ρ3 sin3
(
π
2ρ

) . (283)

Denoting x = 1
ρ , our goal is to lower bound

sin(π2 x)
x − 1

sin3(π2 x)
x3

=
x2 sin

(
π
2x
)
− x3

sin3
(
π
2x
) (284)

for 0 < x ≤ 1
3 .

Note that

lim
x→0

x2 sin
(
π
2x
)
− x3

sin3
(
π
2x
) =

π
2 − 1
π3

23

=
4π − 8

π3
, (285)

which shows that the claimed constant factor is tight. It remains to prove that the function on the
left hand side is monotonically increasing over 0 < x ≤ 1

3 .
To this end, we differentiate it with respect to x:

(
x2 sin

(
π
2x
)
− x3

sin3
(
π
2x
)

)′

=
x

2

(
πx cot

(π
2
x
)
− 2
)
csc2

(π
2
x
)(

3x csc
(π
2
x
)
− 2
)
. (286)

Then, it suffices to show that

πx cot
(π
2
x
)
− 2

?
≤ 0, 3x csc

(π
2
x
)
− 2

?
≤ 0. (287)
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The first inequality is equivalent to π
2x

?
≤ tan

(
π
2x
)
and becomes trivial. The second inequality is

equivalent to 3
2x

?
≤ sin

(
π
2x
)
which also holds trivially when x ≤ 1

3 .
Altogether, we have shown that

ρ sin(θ)− sin(ρθ)

ρ3 sin3(θ)
≥ 4π − 8

π3
. (288)

This is equivalent to the claimed bound.

C Hermitian qubitization

In this appendix, we review results on Hermitian qubitization [38] useful for constructing the branch
marking and gapped phase estimation algorithms in Section 4.1. We use G and H to represent
finite-dimensional Hilbert spaces, on which all operators act.

C.1 U-cyclic subspaces

Lemma 17 (U -cyclic subspaces). Let U : H → H be a unitary operator and G : G → H be an
isometry, such that G†UG is Hermitian. Let |ϕu⟩ be eigenvectors of G†UG with corresponding
eigenvalues λu, and define the cyclic subspaces

Hu = Span
{
. . . , U †2G|ϕu⟩, U †G|ϕu⟩, G|ϕu⟩, UG|ϕu⟩, U2G|ϕu⟩, . . .

}
. (289)

Then:

1. The following conditions are equivalent:

(a) U2G = G;

(b) G†U2G = I.

When any of the conditions is satisfied, all Hu = Span {G|ϕu⟩, UG|ϕu⟩} have dimensions
dim(Hu) = 1, 2 and are invariant under U , U † and GG†.

2. The following conditions are equivalent for 1D subspaces:

(a) dim(Hu) = 1;

(b) {G|ϕu⟩} is a basis for Hu;

(c) λu = ±1;

in which case we have the matrix representation

U =
[
λu
]
, GG† =

[
1
]
. (290)

3. The following conditions are equivalent for 2D subspaces:

(a) dim(Hu) = 2;

(b) {G|ϕu⟩, UG|ϕu⟩} is a basis for Hu;

(c) −1 < λu < 1;
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in which case we have the matrix representation

U =

[
0 1
1 0

]
, GG† =

[
1 λu
0 0

]
. (291)

Proof. Applying Lemma 13 to unitary U2 and orthogonal projection GG†, we have

U2G = G ⇔ U2GG† = GG† ⇔ GG†U2GG† = GG† ⇔ G†U2G = I. (292)

One concludes from
∥∥G†UG

∥∥ ≤
∥∥G†∥∥ ∥U∥ ∥G∥ = 1 that the real eigenvalues of G†UG must satisfy

−1 ≤ λu ≤ 1. As a cyclic subspace, Hu is clearly invariant under U and U †. Furthermore, due to
the equivalence G†U2G = I ⇔ U2G = G⇔ U †2G = G, all U lG|ϕu⟩ can be reduced to either G|ϕu⟩
or UG|ϕu⟩, implying Hu = Span {G|ϕu⟩, UG|ϕu⟩} and dim(Hu) = 1, 2.

Note that G|ϕu⟩ is a vector of unit length, so it must be a basis of Hu if dim(Hu) = 1.
When this happens, UG|ϕu⟩ = µuG|ϕu⟩ for some complex number µu. But this means λuG|ϕu⟩ =
GG†UG|ϕu⟩ = µuGG

†G|ϕu⟩ = µuG|ϕu⟩ and hence |λu| = ∥λuG|ϕu⟩∥ = ∥µuG|ϕu⟩∥ = ∥UG|ϕu⟩∥ =
1, giving λu = ±1. Now assuming λu = ±1, we consider the orthogonal decomposition UG|ϕu⟩ =(
GG†)UG|ϕu⟩+

(
I −GG†)UG|ϕu⟩ = λuG|ϕu⟩+

(
I −GG†)UG|ϕu⟩. By the Pythagorean theorem,∥∥(I −GG†)UG|ϕu⟩

∥∥ = 0, which implies that
(
I −GG†)UG|ϕu⟩ and UG|ϕu⟩ = λuG|ϕu⟩, estab-

lishing the equivalence of three conditions. The matrix representation of U and GG† then follows
from a direct calculation.

When dim(Hu) = 2, the span set {G|ϕu⟩, UG|ϕu⟩} is naturally a basis for Hu. In this case,
we know that −1 ≤ λu ≤ 1 and λu ̸= ±1 simultaneously hold, so it must be that −1 < λu < 1.
Similarly, assuming −1 < λu < 1, then it simultaneously holds that dim(Hu) = 1, 2 and dim(Hu) ̸=
1, implying dim(Hu) = 2. The matrix representation of U and GG† follows again from a direct
calculation.

C.2 Qubitization and quantum walk operator

Now, we perform the orthogonal decompositions

H = Im
(
GG† + UGG†U †

)
k Ker

(
GG† + UGG†U †

)

=
(
Im
(
GG†

)
+ Im

(
UGG†U †

))
k

(
Ker

(
GG†

)
∩Ker

(
UGG†U †

))
,

(293)

which are equivalent since for any two positive semidefinite operators P , Q and state |ϕ⟩,
(P +Q)|ϕ⟩ = 0 ⇔ ⟨ϕ|(P +Q)|ϕ⟩ = 0 ⇔ ⟨ϕ|P |ϕ⟩ = ⟨ϕ|Q|ϕ⟩ = 0 ⇔ P |ϕ⟩ = Q|ϕ⟩ = 0.

(294)
For the purpose of qubitization, we further decompose the first term into 1D and 2D subspaces
introduced in the previous subsection

Im
(
GG†

)
+ Im

(
UGG†U †

)
=

ë

u

Hu. (295)

This gives:

Proposition 18 (Hermitian qubitization). Let U : H → H be a unitary operator and G : G → H
be an isometry, such that G†UG is Hermitian and G†U2G = I. Let |ϕu⟩ be eigenvectors of G†UG
with corresponding eigenvalues λu, and define the cyclic subspaces

Hu = Span
{
. . . , U †2G|ϕu⟩, U †G|ϕu⟩, G|ϕu⟩, UG|ϕu⟩, U2G|ϕu⟩, . . .

}
. (296)

Then:
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1. H admits the orthogonal decomposition

H =
ë

u

Hu k H⊥, (297)

where Hu = Span {G|ϕu⟩, UG|ϕu⟩}, such that
Ë

uHu = Im
(
GG†) + Im

(
UGG†U †) and

H⊥ = ker
(
GG†) ∩ ker

(
UGG†U †). All subspaces are invariant under U , U † and GG†.

2. When λu = ±1, {G|ϕu⟩} is an orthonormal basis for Hu, under which

U =
[
λu
]
, GG† =

[
1
]
. (298)

3. When −1 < λu < 1,

{
G|ϕu⟩, UG|ϕu⟩−λuG|ϕu⟩√

1−λ2u

}
is an orthonormal basis for Hu, under which

U =

[
λu

√
1− λ2u√

1− λ2u −λu

]
, GG† =

[
1 0
0 0

]
. (299)

4. Restricted to H⊥, U is still a unitary and GG† = 0.

Proof. We start by checking the pairwise orthogonality of Hu and Hv for u ̸= v:

⟨ϕv|G†G|ϕu⟩ = 0, ⟨ϕv|G†UG|ϕu⟩ = λu⟨ϕv|ϕu⟩ = 0,

⟨ϕv|G†U †G|ϕu⟩ = λv⟨ϕv|ϕu⟩ = 0, ⟨ϕv|G†U †UG|ϕu⟩ = ⟨ϕv|ϕu⟩ = 0.
(300)

Moreover, we have
Ë

u Span {G|ϕu⟩} = Im(G) = Im(GG†) and
Ë

u Span {UG|ϕu⟩} = Im(UG) =
Im(UGG†U †). Combining with the analysis proceeding this theorem, we have established the
claimed orthogonal decomposition. Since

Ë

uHu is invariant under the normal operators U and
GG†, its orthogonal complement H⊥ is also invariant under U and GG†.

The statement about 1D subspaces is already proved in Lemma 17. When dim(Hu) = 2, we
can construct an orthonormal basis by applying the Gram-Schmidt process to {G|ϕu⟩, UG|ϕu⟩}.
This produces the unit basis vector

UG|ϕu⟩ −G|ϕu⟩⟨ϕu|G†UG|ϕu⟩
∥UG|ϕu⟩ −G|ϕu⟩⟨ϕu|G†UG|ϕu⟩∥

=
UG|ϕu⟩ − λuG|ϕu⟩

∥UG|ϕu⟩ − λuG|ϕu⟩∥

=
UG|ϕu⟩ − λuG|ϕu⟩√

1 + λ2u − λu⟨ϕu|G†UG|ϕu⟩ − λu⟨ϕu|G†U †G|ϕu⟩

=
UG|ϕu⟩ − λuG|ϕu⟩√

1− λ2u

(301)

orthogonal to G|ϕu⟩. The matrix representation then follows from a direct calculation.

For a 2D subspace Hu, we see that

{
|ϕu,0⟩ = G|ϕu⟩, |ϕu,1⟩ = UG|ϕu⟩−λuG|ϕu⟩√

1−λ2u

}
is an orthonormal

basis, under which

U =

[
λu

√
1− λ2u√

1− λ2u −λu

]
, GG† =

[
1 0
0 0

]
. (302)

This means that the quantum walk operator defined by W =
(
2GG† − I

)
U has the matrix repre-

sentation

W =
(
2GG† − I

)
U =

[
λu

√
1− λ2u

−
√

1− λ2u λu

]
= λuI + i

√
1− λ2uY. (303)
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expressed as a linear combination of Pauli operators. Therefore, for each u, W has two eigenvalues

λu,± = λu ± i
√
1− λ2u = e±i arccos(λu) (304)

with the associated eigenvectors

|ϕu,±⟩ =
|ϕu,0⟩ ± i|ϕu,1⟩√

2
. (305)

We thus obtain the following spectral decomposition of the walk operator.

Corollary 19 (Quantum walk). Let U : H → H be a unitary operator and G : G → H be an
isometry, such that G†UG is Hermitian and G†U2G = I. If G†UG has the spectral decomposition

G†UG =
∑

u

λu|ϕu⟩⟨ϕu|, (306)

then the quantum walk operator W =
(
2GG† − I

)
U has the spectral decomposition

W =
(
2GG† − I

)
U

=
∑

|λu|=1

λu|ϕu,0⟩⟨ϕu,0|+
∑

|λu|<1

(
e+i arccos(λu)|ϕu,+⟩⟨ϕu,+|+ e−i arccos(λu)|ϕu,−⟩⟨ϕu,−|

) (307)

within the space Im
(
GG†)+ Im

(
UGG†U †), where

|ϕu,0⟩ = G|ϕu⟩, |ϕu,1⟩ =
UG|ϕu⟩ − λuG|ϕu⟩√

1− λ2u
, |ϕu,±⟩ =

|ϕu,0⟩ ± i|ϕu,1⟩√
2

. (308)

D Gapped phase estimation with branch marking

In this appendix, we provide details on the construction of the gapped phase estimation algorithm
with branch marking, which are used in Section 4.1 for preparing the discretized inverse state.

D.1 Simultaneous Fourier approximation of even and odd functions

We begin by considering the general problem of applying functions to the eigenphases of an in-
put unitary. Specifically, suppose that the given unitary has the spectral decomposition U =∑

v e
iθv |ϕv⟩⟨ϕv|. Our goal is to obtain an operator V close to

∑
v (fa(θv)I + ifc(θv)X) ⊗ |ϕv⟩⟨ϕv|

acting jointly on the input register and an ancilla, for some desired even/odd periodic functions fa
and fc, using oracular queries to the unitary operator U and its inverse. This problem is solved by
the quantum signal processing technique [37, 40], which we review below.

Lemma 20 (Quantum signal processing). Let n > 0 be an integer, fa(θ) =
∑n

k=0 aj cos(kθ) and
fc(θ) =

∑n
k=1 aj sin(kθ) be real Fourier series, such that f2a (θ) + f2c (θ) ≤ 1 for all θ ∈ [−π, π] and

fa(0) = 1. Given oracular access to U =
∑

v e
iθv |ϕv⟩⟨ϕv|, there exists a quantum circuit V acting

on the system register and a single-qubit ancilla as

V =
∑

v

(fa(θv)I + ifb(θv)Z + ifc(θv)X + ifd(θv)Y )⊗ |ϕv⟩⟨ϕv|, (309)

with some even/odd real 2π-periodic functions fb/fd satisfying f2a (θ) + f2b (θ) + f2c (θ) + f2d (θ) = 1
for all θ ∈ [−π, π], using at most 2n queries to U and U †.
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Note that this is slightly different from the setting of QSVT where we are often interested in
a single function with a fixed parity—here we want to construct a unitary V that simultaneously
implements both even and odd functions. In practice, the desired fa and fc can be obtained
by truncating an infinite Fourier series. We then slightly modify the functions to satisfy the
prerequisites f2a (θ) + f2c (θ) ≤ 1 and fa(0) = 1. We will come back to this point momentarily.

Now we describe how to construct the Fourier approximation. Our starting point is the following
Chebyshev approximation of the sign function [36, 58]

n∑

j=0
j odd

βjTj(x) ∈





[−1,−1 + ϵ], x ∈ (−∞,−ν],
[−1, 1], x ∈ [−ν, ν],
[1− ϵ, 1], x ∈ [ν,+∞),

(310)

for arbitrary margin ν > 0, accuracy ϵ > 0 and some coefficients βj . Here, one can choose the
polynomial degree to scale like

n = O

(
1

ν
log

(
1

ϵ

))
. (311)

From this, we then construct a Fourier approximation of the periodic sign function by substituting
x = sin(θ) and ν = sin(φ), assuming 0 < φ ≤ π

2 . Within the period of [−π, π], it has the following
behavior

g(θ) =
n∑

j=0
j odd

βjTj(sin(θ)) ∈





[−1, 1], x ∈ [−π,−π + φ],

[−1,−1 + ϵ], x ∈ [−π + φ,−φ],
[−1, 1], x ∈ [−φ,φ],
[1− ϵ, 1], x ∈ [φ, π − φ],

[−1, 1], x ∈ [π − φ, π].

(312)

Now assuming 0 < φ ≤ θ0 ≤ π
2 , we reflect and shift the periodic sign function to construct the

threshold functions for GPE. Specifically, we define

fc(θ) =
g(θ − θ0)− g(−θ − θ0)

2
=

n∑
j=0
j odd

βjTj(sin(θ − θ0))−
n∑
j=0
j odd

βjTj(sin(−θ − θ0))

2

=

n∑
j=0
j odd

βj sin(jθ − jθ0)(−1)
j−1
2 −

n∑
j=0
j odd

βj sin(−jθ − jθ0)(−1)
j−1
2

2

=

n∑

j=0
j odd

βj sin(jθ) cos(jθ0)(−1)
j−1
2 ,

(313)
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θ g(θ − θ0) g(−θ − θ0) fc(θ) fa(θ)

[−π,−π + θ0 − φ] [1− ϵ, 1] [1− ϵ, 1] [− ϵ
2 ,

ϵ
2 ] [−1,−1 + ϵ]

[−π + θ0 − φ,−π + θ0 + φ] [−1, 1] [1− ϵ, 1] [−1, ϵ2 ] [−1, ϵ2 ]
[−π + θ0 + φ,−θ0 − φ] [−1,−1 + ϵ] [1− ϵ, 1] [−1,−1 + ϵ] [− ϵ

2 ,
ϵ
2 ]

[−θ0 − φ,−θ0 + φ] [−1,−1 + ϵ] [−1, 1] [−1, ϵ2 ] [− ϵ
2 , 1]

[−θ0 + φ, θ0 − φ] [−1,−1 + ϵ] [−1,−1 + ϵ] [− ϵ
2 ,

ϵ
2 ] [1− ϵ, 1]

[θ0 − φ, θ0 + φ] [−1, 1] [−1,−1 + ϵ] [− ϵ
2 , 1] [− ϵ

2 , 1]
[θ0 + φ, π − θ0 − φ] [1− ϵ, 1] [−1,−1 + ϵ] [1− ϵ, 1] [− ϵ

2 ,
ϵ
2 ]

[π − θ0 − φ, π − θ0 + φ] [1− ϵ, 1] [−1, 1] [− ϵ
2 , 1] [−1, ϵ2 ]

[π − θ0 + φ, π] [1− ϵ, 1] [1− ϵ, 1] [− ϵ
2 ,

ϵ
2 ] [−1,−1 + ϵ]

Table 4: Qualitative behavior of the Fourier approximation of threshold functions used in branch marking
and GPE.

and

fa(θ) =
−g(θ − θ0)− g(−θ − θ0)

2
=

−
n∑
j=0
j odd

βjTj(sin(θ − θ0))−
n∑
j=0
j odd

βjTj(sin(−θ − θ0))

2

=

−
n∑
j=0
j odd

βj sin(jθ − jθ0)(−1)
j−1
2 −

n∑
j=0
j odd

βj sin(−jθ − jθ0)(−1)
j−1
2

2

=

n∑

j=0
j odd

βj cos(jθ) sin(jθ0)(−1)
j−1
2 .

(314)

The above functions actually depend on various parameters such as θ0, φ and ϵ, but when their
values are clear from the context, we will suppress these dependences for presentational purposes.
The qualitative behaviors of these functions are shown in Table 4 and Figure 3.

D.2 Branch marking

Recall from Section 4.1 that our preparation of the discretized inverse state uses the quantum walk
operator. When the input matrix has the spectral decomposition

A =
∑

u

λu|ϕu⟩⟨ϕu|, (315)

the walk operator has the corresponding spectral decomposition

W =
∑

u

(
eiθu,+ |ϕu,+⟩⟨ϕu,+|+ eiθu,− |ϕu,−⟩⟨ϕu,−|

)
, θu,± = ± arccos

(
λu
αA

)
. (316)

Here, each eigenvector |ϕu⟩ of the coefficient matrix splits into 2 eigenvectors |ϕu,±⟩ of the quantum
walk opearator, and our primary goal is to ensure that these two branches undergo the exact same
computation in GPE. This way, they can be merged back to recover |ϕu,0⟩, on which we perform
the eigenvalue inversion 1

λu
.
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Figure 3: Illustration of the qualitative behavior of functions used in branch marking (left panel) and GPE
(right panel).

To this end, we choose the block encoding normalization factor αA ≥ 2 ∥A∥, so that

λu
αA

∈
[
−1

2
,
1

2

]
. (317)

Then in the quantum walk operator, this eigenvalue corresponds to two eigenphases

arccos

(
λu
αA

)
∈
[
π

3
,
2π

3

]
, − arccos

(
λu
αA

)
∈
[
−2π

3
,−π

3

]
. (318)

To distinguish between these cases, we can implement the periodic threshold functions with θ0 =
φ = π

6 . This gives

fc

(
± arccos

(
λu
αA

))
≈ ±1, fa

(
± arccos

(
λu
αA

))
≈ 0. (319)

We now carefully analyze the error. Specifically, we consider the two periodic threshold functions
fc(θ) and fa(θ) with θ0 = φ = π

6 whose actions are given by Table 4 and Figure 3. By symmetry,

it suffices to focus on the interval
[
π
3 ,

2π
3

]
. Recall that fc(θ) = g(θ−θ0)−g(−θ−θ0)

2 and fa(θ) =
−g(θ−θ0)−g(−θ−θ0)

2 , which implies

f2c (θ) + f2a (θ) =
g2(θ − θ0) + g2(−θ − θ0)

2
. (320)

For all −π ≤ θ ≤ π, we have from Table 4 that |g(θ − θ0)| , |g(−θ − θ0)| ≤ 1, so f2c (θ) + f2a (θ) ≤ 1
always holds. Also we know from Table 4 that 1 − ϵ ≤ fa(0) ≤ 1. Furthermore, for the target
interval where π

3 ≤ θ ≤ 2π
3 , we have 1 − ϵ ≤ g(θ − θ0) ≤ 1 and −1 ≤ g(−θ − θ0) ≤ −1 + ϵ, which

implies 1− ϵ ≤ fc(θ) ≤ 1. To summarize,




f2a (θ) + f2c (θ) ≤ 1, ∀θ ∈ [−π, π],
1− ϵ ≤ fa(0) ≤ 1,

1− ϵ ≤ fc(θ) ≤ 1, ∀θ ∈
[
π
3 ,

2π
3

]
,

−1 ≤ fc(θ) ≤ −1 + ϵ, ∀θ ∈
[
−2π

3 ,−π
3

]
.

(321)
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We now explain how to satisfy the requirements of Lemma 20. We first run the sum-of-squares
method [40] to obtain functions fb,1(θ), and fd,1(θ) from

fa,1(θ) = fa(θ), fc,1(θ) = fc(θ), (322)

where {
f2a,1(θ) + f2b,1(θ) + f2c,1(θ) + f2d,1(θ) = 1, ∀θ ∈ [−π, π],
f2a,1(0) + f2b,1(0) = 1.

(323)

Then, we let
fa,2(θ) = fa,1(θ)fa,1(0) + fb,1(θ)fb,1(0), fc,2(θ) = fc,1(θ). (324)

Note that by the Cauchy-Schwarz inequality,

f2a,2(θ) + f2c,2(θ) = (fa,1(θ)fa,1(0) + fb,1(θ)fb,1(0))
2 + f2c,1(θ)

≤
(
f2a,1(θ) + f2b,1(θ)

) (
f2a,1(0) + f2b,1(0)

)
+ f2c,1(θ)

= f2a,1(θ) + f2b,1(θ) + f2c,1(θ) ≤ 1.

(325)

Thus, we can rerun the sum-of-squares method to get functions fb,2(θ), and fd,2(θ). These functions
now satisfy {

f2a,2(θ) + f2b,2(θ) + f2c,2(θ) + f2d,2(θ) = 1, ∀θ ∈ [−π, π],
fa,2(0) = 1,

(326)

as desired, resulting in the QSP operator
∑

v

(fa,2(θv)I + ifb,2(θv)Z + ifc,2(θv)X + ifd,2(θv)Y )⊗ |ϕv⟩⟨ϕv|, (327)

where v goes through all 2-tuple (u,±).
It is clear that fc,2 = fc,1 = fc, so we introduce no additional error to the function fc:

{
1− ϵ ≤ fc,2(θ) ≤ 1, ∀θ ∈

[
π
3 ,

2π
3

]
,

−1 ≤ fc,2(θ) ≤ −1 + ϵ, ∀θ ∈
[
−2π

3 ,−π
3

]
.

(328)

As for the remaining components,

f2a,2(θ) + f2b,2(θ) + f2d,2(θ) = 1− f2c,2(θ) ≤ 1− (1− ϵ)2 = 2ϵ− ϵ2, ∀θ ∈
[
−2π

3
,−π

3

]
∪
[
π

3
,
2π

3

]
.

(329)
To proceed, we need the following distance formula for matrices expanded in the Pauli basis.

Lemma 21 (Matrix distance in the Pauli basis). For real vectors β = [βa βb βc βd] and γ =
[γa γb γc γd],

∥(βaI + iβbZ + iβcX + iβdY )− (γaI + iγbZ + iγcX + iγdY )∥ = ∥β − γ∥ . (330)

Proof. We know that the Hermitian matrix

(βb − γb)Z + (βc − γc)X + (βd − γd)Y (331)

has eigenvalues
±
√
(βb − γb)2 + (βc − γc)2 + (βd − γd)2. (332)

The claim then follows by rescaling by i and shifting by βa − γa.

72



When θ ∈
[
π
3 ,

2π
3

]
, our ideal operator is iX, so the error is bounded by

∥iX − ((fa,2(θ)I + ifb,2(θ)Z + ifc,2(θ)X + ifd,2(θ)Y ))∥

≤
√

(1− fc,2(θ))2 + f2a,2(θ) + f2b,2(θ) + f2d,2(θ)

≤
√
ϵ2 + 2ϵ− ϵ2 =

√
2ϵ.

(333)

Similarly, when θ ∈
[
−2π

3 ,−π
3

]
, our ideal operator is −iX, so the error is again bounded by

∥−iX − ((fa,2(θ)I + ifb,2(θ)Z + ifc,2(θ)X + ifd,2(θ)Y ))∥

≤
√

(−1− fc,2(θ))2 + f2a,2(θ) + f2b,2(θ) + f2d,2(θ)

≤
√
ϵ2 + 2ϵ− ϵ2 =

√
2ϵ.

(334)

This establishes the following:

Proposition 22 (Branch marking). Let A/αA be block encoded by OA with normalization fac-

tor αA ≥ 2 ∥A∥. Let A|ϕu⟩ = λu|ϕu⟩ and W |ϕu,±⟩ = e
±i arccos

(
λu
αA

)
|ϕu,±⟩ be the corresponding

eigenpairs of A and the quantum walk operator W . For any ϵ > 0, the isometry

|+⟩|+⟩|ϕu,±⟩ 7→ |ξu,±⟩|ϕu,±⟩, ∥|ξu,±⟩ − |+⟩|±⟩∥ ≤ ϵ (335)

can be implemented using

O

(
log

(
1

ϵ

))
(336)

queries to OA.

Proof. By Lemma 20 and the proceeding analysis, we can implement the operator

V =
∑

u

(F (θu,+)⊗ |ϕu,+⟩⟨ϕu,+|+ F (θu,−)⊗ |ϕu,−⟩⟨ϕu,−|) , (337)

such that ∥F (θu,±)− (±iX)∥ ≤
√
2ϵ for all u. Then, the controlled unitary

|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ (−iV ) (338)

implements the mapping
|+⟩|+⟩|ϕu,±⟩ 7→ |±⟩|+⟩|ϕu,±⟩ (339)

to accuracy
√
2ϵ. The query complexity follows now from Eq. (311) and the rescaling

√
2ϵ 7→ ϵ.

D.3 Branch marked gapped phase estimation

In GPE, our goal is to distinguish between eigenvalues of the input matrix within intervals

λu
αA

∈
[
−γ
ρ
,
γ

ρ

]
and

λu
αA

∈ (−1,−γ] ∪ [γ, 1) . (340)

When we construct the quantum walk operator, each eigenvalue is split into two eigenphases. For
the positive branch, our goal is to distinguish between

arccos

(
λu
αA

)
∈
[
arccos

(
γ

ρ

)
, π − arccos

(
γ

ρ

)]
(341)
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and

arccos

(
λu
αA

)
∈ (0, arccos(γ)] ∪ [π − arccos(γ), π) , (342)

whereas for the negative branch, we need to differentiate

− arccos

(
λu
αA

)
∈
[
−π + arccos

(
γ

ρ

)
,− arccos

(
γ

ρ

)]
(343)

and

− arccos

(
λu
αA

)
∈ (−π,−π + arccos(γ)] ∪ [− arccos(γ), 0) . (344)

Additionally, we need to ensure that GPE has exactly the same behavior on eigenphases with
opposite signs.

Let us consider the positive branch first (corresponding to arccos
(
λu
αA

)
). To this end, we choose

θ0 =
arccos (γ) + arccos

(
γ
ρ

)

2
, φ =

arccos
(
γ
ρ

)
− arccos (γ)

2
. (345)

Then, we implement
∑

u

(fa(θu,+)I + ifb(θu,+)Z + ifc(θu,+)X + ifd(θu,+)Y )⊗ |ϕu,+⟩⟨ϕu,+|, (346)

where

fc(θ) ≈





0, θ ∈ (0, arccos(γ)] ,

1, θ ∈
[
arccos

(
γ
ρ

)
, π − arccos

(
γ
ρ

)]
,

0, θ ∈ [π − arccos(γ), π) ,

(347)

and

fa(θ) ≈





1, θ ∈ (0, arccos(γ)] ,

0, θ ∈
[
arccos

(
γ
ρ

)
, π − arccos

(
γ
ρ

)]
,

−1, θ ∈ [π − arccos(γ), π) .

. (348)

Note that fa(θu,+) ≈ ±1 has different signs for eigenvalue of the input matrix λu ≷ 0 with opposite
signs, and the function values are also quite different in the transition band. But this is acceptable
since this auxiliary information will be uncomputed in the end.

However, this choice of functions will have a different behavior on the negative branch. To
address this issue, we instead aim to perform

∑

v

(fa(−θu,−)I + ifb(−θu,−)Z + ifc(−θu,−)X + ifd(−θu,−)Y )⊗ |ϕu,−⟩⟨ϕu,−|. (349)

That is, the action of this new operator on negative eigenphases is exactly the same as that of the
above operator on positive eigenphases. Moreover, the new polynomials automatically satisfy the
requirements. In particular, it holds that fc(−θ) = −fc(θ), fa(−θ) = fa(θ).

Now we discuss error analysis. Without loss of generality, we focus on the distinguishment of

[0, arccos (γ)] and
[
arccos

(
γ
ρ

)
, π2

]
, since the other cases have exactly the same error by symme-

try. Proceeding as in the previous subsection, we consider fc(θ) = g(θ−θ0)−g(−θ−θ0)
2 and fa(θ) =

−g(θ−θ0)−g(−θ−θ0)
2 where

f2c (θ) + f2a (θ) =
g2(θ − θ0) + g2(−θ − θ0)

2
. (350)
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We also know from Table 4 that f2c (θ) + f2a (θ) ≤ 1 and 1 − ϵ ≤ fa(0) ≤ 1. Furthermore, we
have − ϵ

2 ≤ fc(θ) ≤ ϵ
2 and 1 − ϵ ≤ fa(θ) ≤ 1 for the target interval 0 ≤ θ ≤ arccos (γ), and

1− ϵ ≤ fc(θ) ≤ 1 and − ϵ
2 ≤ fa(θ) ≤ ϵ

2 for the target interval arccos
(
γ
ρ

)
≤ θ ≤ π

2 . To summarize,





f2a (θ) + f2c (θ) ≤ 1, ∀θ ∈ [−π, π],
1− ϵ ≤ fa(0) ≤ 1,

|fc(θ)| ≤ ϵ
2 , 1− ϵ ≤ fa(θ) ≤ 1, ∀θ ∈ [0, arccos (γ)] ,

1− ϵ ≤ fc(θ) ≤ 1, |fa(θ)| ≤ ϵ
2 , ∀θ ∈

[
arccos

(
γ
ρ

)
, π2

]
.

(351)

When θ ∈
[
arccos

(
γ
ρ

)
, π2

]
, our ideal operator is iX, so the error can be bounded in a similar way

as in the previous subsection

∥iX − ((fa,2(θ)I + ifb,2(θ)Z + ifc,2(θ)X + ifd,2(θ)Y ))∥

≤
√

(1− fc,2(θ))2 + f2a,2(θ) + f2b,2(θ) + f2d,2(θ)

≤
√
ϵ2 + 2ϵ− ϵ2 =

√
2ϵ.

(352)

Let us now consider θ ∈ [0, arccos (γ)]. We let

fa,1(θ) = fa(θ), fc,1(θ) = fc(θ), (353)

and run the sum-of-squares method [40] to obtain

{
f2a,1(θ) + f2b,1(θ) + f2c,1(θ) + f2d,1(θ) = 1, ∀θ ∈ [−π, π],
f2a,1(0) + f2b,1(0) = 1.

(354)

Continuing, we define

fa,2(θ) = fa,1(θ)fa,1(0) + fb,1(θ)fb,1(0), fc,2(θ) = fc,1(θ). (355)

and rerun the sum-of-squares method to get

{
f2a,2(θ) + f2b,2(θ) + f2c,2(θ) + f2d,2(θ) = 1, ∀θ ∈ [−π, π],
fa,2(0) = 1.

(356)

This results in

∑

u

(fa,2(θu,+)I + ifb,2(θu,+)Z + ifc,2(θu,+)X + ifd,2(θu,+)Y )⊗ |ϕu,+⟩⟨ϕu,+|. (357)

Now we have

|fa,2(θ)− fa,1(θ)| = |fa,1(θ) (fa,1(0)− 1) + fb,1(θ)fb,1(0)|

≤ |fa,1(θ)| |fa,1(0)− 1|+
√

1− f2a,1(θ)
√
1− f2a,1(0)

≤ 1 · ϵ+
√
1− (1− ϵ)2

√
1− (1− ϵ)2 = 3ϵ− ϵ2,

(358)

which implies
|fa,2(θ)− 1| ≤ 4ϵ− ϵ2. (359)
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Combining with the obvious requirement that |fa,2| ≤ 1, we arrive at

1− 4ϵ ≤ 1− 4ϵ+ ϵ2 ≤ fa,2(θ) ≤ 1. (360)

When θ ∈ [0, arccos (γ)], our ideal operator is I, so the error can be bounded as

∥I − ((fa,2(θ)I + ifb,2(θ)Z + ifc,2(θ)X + ifd,2(θ)Y ))∥

≤
√
(1− fa,2(θ))2 + f2b,2(θ) + f2c,2(θ) + f2d,2(θ)

≤
√
(4ϵ)2 + 1− (1− 4ϵ)2 = 2

√
2ϵ.

(361)

Altogether, we have established the following proposition. Note it is important that the output
state |ξu⟩ of gapped phase estimation has no dependence on the ± branches of eigenphases. This
is the primary goal of branch marking.

Proposition 23 (Branch marked gapped phase estimation). Let A/αA be block encoded by OA

with normalization factor αA ≥ 2 ∥A∥. Let A|ϕu⟩ = λu|ϕu⟩ and W |ϕu,±⟩ = e
±i arccos

(
λu
αA

)
|ϕu,±⟩ be

the corresponding eigenpairs of A and the quantum walk operator W . For any ϵ > 0, 0 < γ < αA
2

and constant ρ > 0, the isometry

|±⟩|0⟩|ϕu,±⟩ 7→ |±⟩|ξu⟩|ϕu,±⟩,





∥|ξu⟩ − |0⟩∥ ≤ ϵ, λu
αA

∈ [γ, 1),

∥|ξu⟩ − i|1⟩∥ ≤ ϵ, λu
αA

∈
[
−γ
ρ ,

γ
ρ

]
,

∥|ξu⟩ − (−|0⟩)∥ ≤ ϵ, λu
αA

∈ (−1,−γ] ,
(362)

can be implemented using

O

(
1

γ
log

(
1

ϵ

))
(363)

queries to OA.

Proof. By Lemma 20 and the proceeding analysis, we can implement the operators

V+ =
∑

u

F (θu,+)⊗ |ϕu,+⟩⟨ϕu,+|, V− =
∑

u

F (−θu,−)⊗ |ϕu,−⟩⟨ϕu,−| (364)

respectively, such that




∥F (θ)− I∥ ≤ 2
√
2ϵ, θ ∈ (0, arccos (γ)] ,

∥F (θ)− iX∥ ≤
√
2ϵ, θ ∈

[
arccos

(
γ
ρ

)
, π − arccos

(
γ
ρ

)]
,

∥F (θ)− (−I)∥ ≤ 2
√
2ϵ, θ ∈ [π − arccos(γ), π) .

(365)

Then, the controlled unitary
|+⟩⟨+| ⊗ V+ + |−⟩⟨−| ⊗ V− (366)

implements the mapping

|±⟩|0⟩|ϕu,±⟩ 7→





|±⟩|0⟩|ϕu,±⟩, λu
αA

∈ [γ, 1),

i|±⟩|1⟩|ϕu,±⟩, λu
αA

∈
[
−γ
ρ ,

γ
ρ

]
,

−|±⟩|0⟩|ϕu,±⟩, λu
αA

∈ (−1,−γ] ,
(367)

to accuracy 2
√
2ϵ. The query complexity follows now from Eq. (311) and the rescaling 2

√
2ϵ 7→

ϵ.
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E Multiplicative approximation of success probabilities

In this appendix, we will consider a number of success probabilities involved in the analysis of
our quantum linear system algorithm in Section 4. Specifically, we will analyze five different
probabilities and show that they are in fact all constant multiplicative approximations of one
another.

E.1 Definition of success probabilities

The first probability corresponds to the success probability of applying a block-encoded inverse of
the input matrix to the initial state. Suppose that our input matrix is block encoded as A/αA with
normalization factor αA ≥ ∥A∥ and upper bound αA−1 ≥

∥∥A−1
∥∥ on norm of the inverse matrix.

Without loss of generality, we assume that both αA and αA−1 are powers of 3, so that αAαA−1 = 3m

for some positive integer m. By switching to the Hermitian dilation |0⟩⟨1| ⊗ A + |1⟩⟨0| ⊗ A†, we
further assume that A is Hermitian with the spectral decomposition A =

∑
u λu|ϕu⟩⟨ϕu| where

1
αA−1

≤ |λu| ≤ αA, while the initial state can be expanded in the eigenbasis of A as |b⟩ =∑u γu|ϕu⟩.
Then, we define

ψinv =
A−1

αA−1

|b⟩ =
∑

u

1

αA−1λu
γu|ϕu⟩, psucc =

∥∥A−1|b⟩
∥∥2

α2
A−1

=
1

α2
A−1

(∑

u

∣∣∣∣
γu
λu

∣∣∣∣
2
)
. (368)

The second probability is an auxiliary probability for a version of discretized inverse state
supported only on one basis state of the time register. We let

ψd-inv,1 =
m−1∑

k=0

3k+1

3m
|k⟩

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) γu|ϕu⟩, psucc,d-inv,1 =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9

k+1

9m
.

(369)
The third probability corresponds to the probability of the discretized inverse state supported

on two basis states of the time register. Concretely,

ψd-inv =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

(
ζk+1,u

3k+1

3m
|k⟩+ ζk,u

3k

3m
|k − 1⟩

)
γu|ϕu⟩,

psucc,d-inv =

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j=k,k+1

|ζj,u|2
9j

9m
.

(370)

The fourth probability is also an auxiliary probability for a version of discretized inverse state
with full support on all basis states of the time register, assuming branch marking is performed
perfectly:

ψd-inv,m =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

m∑

j=1

ζj,u
3j

3m
|j − 1⟩γu|ϕu⟩,

pd-inv,m =
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
m∑

j=1

|ζj,u|2
9j

9m
.

(371)

Finally, the fifth probability is for the actual state ψd-inv,bm prepared by the erroneous GPE
and branch marking. We denote this probability by psucc,d-inv,bm.
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E.2 Multiplicative bounds on success probabilities

We now give multiplicative bounds on the success probabilities introduced in the previous subsec-
tion. Our analysis uses the following lemma.

Lemma 24. The following estimates hold:

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j ̸=k,k+1

|ζj,u|2
9j

9m
≤



m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9

k+2

9m


 ϵ2gpe,

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j ̸=k,k+1

|ζj,u|2
9k

9m
≤



m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9k

9m


 ϵ2gpe.

(372)

Proof. Recall that the cumulative coefficients ζj,u have the following bound

|ζj,u| ≤





ϵgpe,j , j ≤ k − 1,
j−1∏
l=k+1

ϵgpe,l, j ≥ k + 2.
(373)

Therefore, we can prove the first claim as

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2



k−1∑

j=1

ϵ2gpe,j
9j

9m
+

m∑

j=k+2

j−1∏

l=k+1

ϵ2gpe,l
9j

9m




≤
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2



k−1∑

j=1

ϵ2gpe,j
9k−1

9m
+

m∑

j=k+2

ϵ2gpe,j−1

9k+2

9m




≤
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
m−1∑

j=1

ϵ2gpe,j
9k+2

9m
≤

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9

k+2

9m



m−1∑

j=1

ϵgpe,j




2

︸ ︷︷ ︸
ϵ2gpe

,

(374)

where we have assumed all ϵgpe,l ≤ 1
3 . Similarly for the second claim,

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2



k−1∑

j=1

ϵ2gpe,j
9k

9m
+

m∑

j=k+2

j−1∏

l=k+1

ϵ2gpe,l
9k

9m




≤
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2



k−1∑

j=1

ϵ2gpe,j
9k

9m
+

m∑

j=k+2

ϵ2gpe,j−1

9k

9m




≤
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
m−1∑

j=1

ϵ2gpe,j
9k

9m
≤

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9k

9m



m−1∑

j=1

ϵgpe,j




2

︸ ︷︷ ︸
ϵ2gpe

.

(375)
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Let us begin with the relation between psucc and psucc,d-inv,1 which is easy to describe. Following

1

α2
A−1

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

∣∣∣∣
γu
λu

∣∣∣∣
2

≤ 1

α2
A−1

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9k+1

α2
A

=

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9k+1

9m
,

1

α2
A−1

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

)

∣∣∣∣
γu
λu

∣∣∣∣
2

≥ 1

α2
A−1

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9k

α2
A

=

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9k

9m
,

(376)
we conclude that

psucc,d-inv,1
9

≤ psucc ≤ psucc,d-inv,1. (377)

Then, we consider psucc,d-inv,1 and psucc,d-inv. It is fairly straightforward to derive one side of the
bound

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j=k,k+1

|ζj,u|2
9j

9m
≤

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2 9

k+1

9m
. (378)

Analysis of the other side however is more involved and relies on Lemma 24:

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j=k,k+1

|ζj,u|2
9j

9m
≥

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j=k,k+1

|ζj,u|2
9k

9m

=

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
m∑

j=1

|ζj,u|2
9k

9m
−
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j ̸=k,k+1

|ζj,u|2
9k

9m

≥ psucc,d-inv,1
9

− psucc,d-inv,1
9

ϵ2gpe.

(379)

This gives
psucc,d-inv,1

9

(
1− ϵ2gpe

)
≤ psucc,d-inv ≤ psucc,d-inv,1. (380)

Next, we discuss psucc,d-inv and psucc,d-inv,m. Again, one side of the bound follows trivially from
the definition

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j=k,k+1

|ζj,u|2
9j

9m
≤

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
m∑

j=1

|ζj,u|2
9j

9m
. (381)

As for the other side, we apply Lemma 24 to compute

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j=k,k+1

|ζj,u|2
9j

9m

=
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
m∑

j=1

|ζj,u|2
9j

9m
−
m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
∑

j ̸=k,k+1

|ζj,u|2
9j

9m

≥ psucc,d-inv,m − 92psucc,d-inv,1ϵ
2
gpe ≥ psucc,d-inv,m − 93psucc,d-inv

(
ϵgpe

1− ϵgpe

)2

.

(382)
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We thus obtain

psucc,d-inv ≤ psucc,d-inv,m ≤ psucc,d-inv

(
1 + 93

ϵ2gpe

(1− ϵgpe)
2

)
. (383)

Finally, we examine psucc,d-inv,m and psucc,d-inv,bm. As branch marking is invoked twice, we have
the additive approximation

|psucc,d-inv,m − psucc,d-inv,bm| ≤ 2
∣∣√psucc,d-inv,m −√

psucc,d-inv,bm
∣∣ ≤ 4ϵbm. (384)

Let us summarize these estimates as follows.

Proposition 25 (Multiplicative bounds on success probabilities). Let the five success probabilities
psucc, psucc,d-inv,1, psucc,d-inv, psucc,d-inv,m and psucc,d-inv,bm be defined as in Appendix E.1. Then,

psucc,d-inv,1
9

≤ psucc ≤ psucc,d-inv,1,

psucc,d-inv,1
9

(
1− ϵ2gpe

)
≤ psucc,d-inv ≤ psucc,d-inv,1,

psucc,d-inv ≤ psucc,d-inv,m ≤ psucc,d-inv

(
1 + 93

ϵ2gpe

(1− ϵgpe)
2

)
,

|psucc,d-inv,m − psucc,d-inv,bm| ≤ 4ϵbm.

(385)

Hence, as long as
ϵgpe = O(1), ϵbm = O (psucc) , (386)

all success probabilities are constant multiplicative approximations of one another

psucc,d-inv,1, psucc,d-inv, psucc,d-inv,m, psucc,d-inv,bm = Θ (psucc) . (387)

E.3 Multiplicative bounds on sum of amplification thresholds

In Section 4.2, we have derived the following multiplicative bounds on sum of amplification thresh-
olds

psucc,d-inv9
l ≤

m∑

j=m−l+1

∥∥ΠjΠbAj · · ·A1|ψ0⟩
∥∥2 9j−m+l ≤ 5

4
psucc,d-inv9

l, (388)

where we assume VTAA with input algorithms A1, . . . , Am produces ψd-inv. We now incorporate
the error of GPE and branch marking into the analysis.

When we consider erroneous GPE and perfect branch marking, VTAA with input algorithms
B1, . . . , Bm produces ψd-inv,m and the potentially good probabilities take the form

∥∥ΠjΠbBj · · ·B1|ψ0⟩
∥∥2 =

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2

m∑

h=j+1

|ζh,u|2

+

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2

j∑

h=1

|ζh,u|2
9h

9m
.

(389)
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Correspondingly, the sum of amplification thresholds are split into two terms:

m∑

j=m−l+1

∥∥ΠjΠbBj · · ·B1|ψ0⟩
∥∥2 9j−m+l =

m∑

j=m−l+1

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2

m∑

h=j+1

|ζh,u|2 9j−m+l

+
m∑

j=m−l+1

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2

j∑

h=1

|ζh,u|2
9h

9m
9j−m+l.

(390)
We exchange the summation order in the first term to get

m∑

j=m−l+1

m∑

h=j+1

9j =
m∑

h=m−l+2

h−1∑

j=m−l+1

9j =
9

8

m∑

h=m−l+2

9h−1, (391)

whereas for the second term

m∑

j=m−l+1

j∑

h=1

9j =
m∑

h=1

m∑

j=h

9j =
9

8

m∑

h=1

9m. (392)

Altogether,

pd-inv,m9
l ≤

m∑

j=m−l+1

∥∥ΠjΠbBj · · ·B1|ψ0⟩
∥∥2 9j−m+l

≤ 5

4

m−1∑

k=0

∑
∣∣∣ λuαA ∣∣∣∈[ 1

3k+1 ,
1

3k

) |γu|
2
m∑

h=1

|ζh,u|2 9h−m+l ≤ 5

4
pd-inv,m9

l.

(393)

Finally, we consider the general case where both GPE and branch marking are imperfect. In this
case, VTAA with input algorithms C1, . . . , Cm produces ψd-inv,bm with ∥ψd-inv,bm∥2 = psucc,d-inv,bm.
Then, the sum of amplification thresholds has error
∣∣∣∣∣∣

m∑

j=m−l+1

∥∥ΠjΠbBj · · ·B1|ψ0⟩
∥∥2 9j−m+l −

m∑

j=m−l+1

∥∥ΠjΠbCj · · ·C1|ψ0⟩
∥∥2 9j−m+l

∣∣∣∣∣∣
≤ 9

8
4ϵbm9

l. (394)

We thus obtain:

Proposition 26 (Multiplicative bounds on sum of amplification thresholds). Let the input algo-
rithms A1, . . . , Am, B1, . . . , Bm and C1, . . . , Cm be defined as in Appendix E.3. Then,

psucc,d-inv9
l ≤

m∑

j=m−l+1

∥∥ΠjΠbAj · · ·A1|ψ0⟩
∥∥2 9j−m+l ≤ 5

4
psucc,d-inv9

l,

pd-inv,m9
l ≤

m∑

j=m−l+1

∥∥ΠjΠbBj · · ·B1|ψ0⟩
∥∥2 9j−m+l ≤ 5

4
pd-inv,m9

l,

∣∣∣∣∣∣

m∑

j=m−l+1

∥∥ΠjΠbBj · · ·B1|ψ0⟩
∥∥2 9j−m+l −

m∑

j=m−l+1

∥∥ΠjΠbCj · · ·C1|ψ0⟩
∥∥2 9j−m+l

∣∣∣∣∣∣
≤ 9

8
4ϵbm9

l.

(395)
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Hence, as long as
ϵgpe = O(1), ϵbm = O (psucc) , (396)

all sums of amplification thresholds have the scaling

m∑

j=m−l+1

∥∥ΠjΠbAj · · ·A1|ψ0⟩
∥∥2 9j−m+l = Θ

(
psucc9

l
)
,

m∑

j=m−l+1

∥∥ΠjΠbBj · · ·B1|ψ0⟩
∥∥2 9j−m+l = Θ

(
psucc9

l
)
,

m∑

j=m−l+1

∥∥ΠjΠbCj · · ·C1|ψ0⟩
∥∥2 9j−m+l = Θ

(
psucc9

l
)
.

(397)
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[51] Rolando D. Somma and Yiğit Subaşı, Complexity of quantum state verification in the quantum
linear systems problem, PRX Quantum 2 (2021), 010315, arXiv:2007.15698.

[52] J Michael Steele, The Cauchy-Schwarz master class: an introduction to the art of mathematical
inequalities, Cambridge University Press, 2004.
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